Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Continued funding for research on cell death


3.5 million euros for tri-national research unit on the modulation of programmed cell death

Programmed cell death is a basic pre-requisite for life, and its underlying mechanisms are immensely interesting not only for cancer research. The tri-national research unit FOR2036, whose speaker is Professor Thomas Brunner (professor of biochemical pharmacology) of the University of Konstanz, includes scientists from Germany, Switzerland and Austria.

Since 2014 they have studied how the programmed cell death, the so-called apoptosis, is being regulated. That the research unit is on the right track has now been confirmed: the German Research Foundation (DFG) and the Austrian Science Fund (FWF) will continue to fund the research unit, consisting of nine sub-projects, with 3.4 million euros over the next three years.

The complex functional network of the so-called Bcl-2 family proteins plays a central role in modulating the programmed cell death. The name of the research unit "New insights into Bcl-2 family interactions: from biophysics to function" indicates that the teams deal with the question on different levels.

The research spectrum ranges from in vitro approaches of biophysics and biochemistry to cell biological or system biological processes, as well as clinical methods and approaches where the cells of tumour patients are examined on their characteristic pattern of Bcl-2 proteins and cell death. "The considerable resources in this consortium allow us to initiate projects quickly and flexibly", says Thomas Brunner about the synergies in the joint research project.

Why programmed cell death?
Our immune system shows us how important it is to rid of unwanted cells through apoptosis: after recovering from an infection, programmed cell death will adjust the number of granulocytes or lymphocytes to a normal level. This cell death induction seems to no longer function in leukemia cells. Therefore one of the most central questions in tumour research is how to influence the network of the Bcl-2 family. Its "family members" can prevent or promote cell death - the corresponding interaction is decisive. Cell death is triggered by certain molecules (called Bax and Bak) that form pores in the mitochondrial outer membrane of the cell, which in turn initiates apoptosis induction. One of the goals in tumour therapy is to positively influence the pore-forming effect.

Basic research implemented in clinical practice
So-called BH3-molecules can constrain Bcl-2-homologues that are conducive for survival and are found in larger numbers in many tumour cells. A new class of molecules developed by research is able to mimic BH3-molecules ("BH3 mimetics"). They, too, promote the formation of pores and thus cell death. "This year this new class of substances was approved by the US-American Food and Drug Administration (FDA) for the treatment of certain types of leukemia. This is one of the examples where basic research gained a foothold in clinical practice very quickly. One of our colleagues, PD Dr. Philipp Jost at the hospital "Klinikum rechts der Isar" of the Technical University in Munich will be involved in these clinical studies", explains Thomas Brunner.

Pores made visible for the first time
Another highlight for the research unit is that Professor Ana García-Sáez (University of Tübingen), using high-resolution microscopy, now succeeded in visualizing pores, which had been postulated before only on the basis of calculations and biochemical tests. The bio-physical research methods are very reductionistic and make it possible to study these proteins nearly on a physical level. This was an extremely important approach for various members of this research unit", explains Thomas Brunner.

University of Konstanz: mathematical models make predictions possible
Team members at the University of Konstanz work on mathematically tracking the complex pattern of possible interactions. Professor Tancred Frickey and doctoral student Annika Hantusch, in cooperation with Thomas Brunner and Professor Markus Morrison from Tübingen, develop model systems that can simulate the interactions of the family members. This will enable the researchers to predict how a cell with a certain pattern of Bcl-2-homologs will react to certain chemotherapeutic substances. "We have made huge progress in developing the mathematical model, and we have also collected data that is available in the expert literature in one online data base. These interactions can directly be searched for on the corresponding website of the University of Konstanz." In the future, mathematical analysis might predict whether a patient will react positively to a certain treatment without actually having to burden the patient with drugs that will probably be ineffective.

The research unit "New insights into Bcl-2 family interactions: from biophysics to function" (FOR 2036) was funded by the German Research Foundation (DFG), the Austrian Science Fund (FWF) and the Swiss National Science Foundation (SNF) from 2013–2016. For the second funding period 2017–2020 the DFG and the FWF will support the consortium with a total of 3.5 euros. Professor Thomas Brunner, chair of biochemical pharmacology at the University of Konstanz, is the speaker of the Konstanz-based research unit.
Institutions and members:
University of Konstanz (Germany): Professor Thomas Brunner
University of Freiburg (Germany): Dr. Miriam Erlacher, Professor Christoph Borner, Professor Georg Häcker
University of Tübingen (Germany): Professor Ana García Sáez
Technical University of Munich (Germany): PD Dr. Philipp Jost
University of Stuttgart (Germany): Professor Markus Morrison (-Rehm)
University hospitals Salzburg (Austria): PD Dr. Alexander Egle
Innsbruck Medical University (Austria): Professor Andreas Villunger
University of Bern (Switzerland): Professor Thomas Kaufmann (associated)
Professor Thomas Brunner
Microscopic evidence of cytochrome c-release during apoptosis. On the left a group of liver cancer cells that still hold cytochrome c (green) in the mitochondria; on the right the same cells 5 minutes later with a cell (arrow) which already has spilled its cytochrome c into the cytoplasm and will now die.
The web-based data base "Bcl-2-ome" on Bcl-2-family-interactions (

University of Konstanz
Communications and Marketing
Phone: + 49 7531 88-3603

Julia Wandt | idw - Informationsdienst Wissenschaft
Further information:

Further reports about: DFG apoptosis cell death pores programmed cell death proteins tumour

More articles from Awards Funding:

nachricht Innovation Award of the United Nations Environment Programme for PhD Student from ZMT
22.03.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht ERC Project set to boost application of adhesive structures
19.03.2018 | INM - Leibniz-Institut für Neue Materialien gGmbH

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

Don't Give the Slightest Chance to Toxic Elements in Medicinal Products

23.03.2018 | Life Sciences

Sensitive grip

23.03.2018 | Materials Sciences

No compromises: Combining the benefits of 3D printing and casting

23.03.2018 | Process Engineering

Science & Research
Overview of more VideoLinks >>>