Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BMBF funding for diabetes research on pancreas chip

08.02.2017

Germany's Federal Ministry of Education and Research (BMBF) will be funding the new "PancChip" consortium for the next three years. This group will be coordinated at the Helmholtz Zentrum München, where also some of its work is carried out. The objective is further development of the culture and differentiation of stem cells into functional beta cells on a chip, and consequently the resolution of issues regarding the formation and treatment of diabetes and other pancreatic disorders. The total funding amounts to 1.5 million euros and will be distributed equally among the three partner institutions.

In various types of diabetes, the insulin-producing beta cells in the pancreas are destroyed. Science is focusing more and more on replacement and regeneration therapies as possible treatments for this case. The idea behind this: To use stem cells, which are cells that can develop into other types of cells, as a source for insulin-producing beta cells.


Lab on a chip: the chips on which the pancreatic cells are cultivated have the size of a thumb tip.

Copyright: Matthias Meier, University of Freiburg

"Unfortunately, however, our understanding of the signals and factors that regulate stem cell programming is still not sufficient," explains Prof. Dr. Heiko Lickert, director of the Institute of Diabetes and Regeneration Research (IDR) at the Helmholtz Zentrum München and holder of the Chair of Beta Cell biology at the Technical University of Munich (TUM). Together with Dr. Matthias Meier from the University of Freiburg, he will be coordinating and leading the project. Also taking part in the project is Prof. Dr. Alexander Kleger from the Department of Internal Medicine at the Ulm University Medical Center.

Together, the scientists want to develop a number of cell culture models in a chip format in order to investigate which factors regulate the stem cells' development into endocrine and exocrine* cell lines, and how this regulation takes place. The cells grow on a substrate (the chip) and the fluids above this (a culture medium with and without additional substances) are regulated by means of miniaturized pneumatic valves. Also included are analysis methods in order to provide comprehensive documentation of the cells' reaction.

In the next step, a 3D model system is to generate so-called organoids, or mini-organs, in order to allow an examination of disease processes. "Using this 'organoid clinic', we will be able to test active substances under standardized conditions and examine the reaction of patient material to therapy options," states project leader Lickert. The Munich researchers are going to specialize in modelling diabetes, in particular, while the focus in Ulm is to be on research on chronic inflammation of the pancreas (pancreatitis).

Over the long term, the project is expected to pay off in three directions: Scientifically, the consortium would like to explore the biology behind pancreatic diseases and identify possible points of attack. Clinically, the work will focus on developing beta cell replacement therapy and consequently in the long term, on healing diabetes mellitus. And last but not least, the project should also generate an economic benefit: Ultimately** it should be possible for a start-up company to utilize the research results. Conceivable options here would be the chip itself for possible production of beta cells from stem cells, a high-throughput screening platform for chemotherapeutics to check the efficacy on pancreatic cells, and an innovative instrument for individualized preliminary testing of therapy options on patient material.

Further Information

* While endocrine cells release their products (such as the messenger insulin) into the blood, exocrine cells secrete substances “outwards”. In the context of the pancreas, these substances are often the digestive enzymes, which are released into the duodenum.

** However, the researchers do not want to give rise to exaggerated expectations with regard to the first successes. They estimate that it will take roughly ten years until the results can be utilized. The term initially runs from 1 February 2017 until 31 January 2020.

Background:
Technically, the project is based on a microfluidic cell culture chip platform. This means that the cells grow on a substrate (the chip), and the fluids above this (a culture medium with and without additional substances) are regulated by means of miniaturized pneumatic valves. The so-called microfluidic large-scale integration technology (mLSI) will then make it possible to characterize the cells appropriately. For example, this comprises simultaneous analyses of various proteins in and around the cell (multiplex in situ protein analysis) including their interactions ("proximity ligation assay"), live cell imaging, the tracking of individual cells during differentiation, and much more.

Related Articles:
New Approach for Regenerative Therapy
https://www.helmholtz-muenchen.de/en/press-media/press-releases/all-press-releas...
Big Data for small cells – a new tracking and quantification tool for single cells
https://www.helmholtz-muenchen.de/en/press-media/press-releases/all-press-releas...
Stem cell research: New, major EU research grant focused on stem cell-based treatment of Diabetes
https://www.helmholtz-muenchen.de/en/press-media/press-releases/all-press-releas...

The Helmholtz Zentrum München, the German Research Center for Environmental Health, pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München is headquartered in Neuherberg in the north of Munich and has about 2,300 staff members. It is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members. http://www.helmholtz-muenchen.de/en

The research activities of the Institute of Diabetes and Regeneration Research (IDR) focus on the biological and physiological study of the pancreas and/or the insulin producing beta cells. Thus, the IDR contributes to the elucidation of the development of diabetes and the discovery of new risk genes of the disease. Experts from the fields of stem cell research and metabolic diseases work together on solutions for regenerative therapy approaches of diabetes. The IDR is part of the Helmholtz Diabetes Center (HDC). http://www.helmholtz-muenchen.de/idr

Contact for the media:
Department of Communication, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 2238 - Fax: +49 89 3187 3324 - E-mail: presse@helmholtz-muenchen.de

Scientific Contact at Helmholtz Zentrum München:
Prof. Dr. Heiko Lickert, Helmholtz Zentrum München - German Research Center for Environmental Health, Institute of Diabetes and Regeneration Research, Parkring 11, 85748 Garching - Tel. +49 89 3187 3867, E-mail: heiko.lickert@helmholtz-muenchen.de

Sonja Opitz | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

More articles from Awards Funding:

nachricht Tracking down the origins of gold
08.11.2017 | Heidelberger Institut für Theoretische Studien gGmbH

nachricht Lasagni awarded with Materials Science and Technology Prize 2017
09.10.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>