Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Award for ground-breaking measuring methods

09.05.2016

Five Frankfurt physicists receive the Helmholtz Award with an endowment of Euro 20,000.

This year the most important award in the field of metrology, the science of making precise measurements, was awarded to a team of five Frankfurt atomic physicists at Goethe University: Prof. Reinhard Dörner, Associate Prof. Dr. Till Jahnke, Dr. Maksim Kunitzki, Dr. Jörg Voigtsberger and Stefan Zeller. The Helmholtz award includes an endowment of Euro 20,000 and is awarded to European researchers every three years.


Prof. Reinhard Dörner (left) and Maksim Kunitski in front of the equipment used to complete the outstanding work.

GU

The award recipients succeeded in measuring the extremely weak binding energy of helium molecules with a previously unachievable precision. Chemistry teaches us that helium as a noble gas doesn't form bonds. However, this becomes possible under certain circumstances predicted by quantum theory.

The study group under Dörner has measured this binding energy indirectly with the COLTRIMS reaction microscope developed at Goethe University. It can be used to measure the location and speed of decaying molecules at the same time with a high level of accuracy, and this data can be used to reconstruct the original configuration. The award winners focused on rare molecules composed of two or three helium atoms.

"It started with the German Research Foundation approving me for a Koselleck project with funding of over 1.25 million in 2009. This is a kind of venture capital, which the DFG uses to support experiments with a long lead time", Prof. Reinhard Dörner from the Institute for Nuclear Physics explains.

Dr. Till Jahnke laid the foundation for the equipment, then doctoral candidate Jörg Voigtsberger took over the experiment and achieved initial successes. The next doctoral candidate, Stefan Zeller, was able to make significant improvements to the equipment and to further increase the precision.

To do so, he had to direct the largest "photon canon" in Germany, the "Free Electron Laser FLASH" at the DESY research centre in Hamburg, at the extremely weakly bonded helium molecules. In this way he was able to determine the binding energy with a precision of a few nano-electron volts. This means that the binding energy of the helium molecules is one-hundred million times weaker than in a water molecule, for example.

The series of experiments culminated this past year with the dicovery of the so-called Efimov state for a helium molecule made up of three atoms. This comparatively huge molecule predicted 40 years ago by the Russian theorist Vitaly Efimov, can only exist in the tunnel effect established by quantum physics. The postdoc Maksim Kunitzki succeeded in making this measurement with the same equipment.

"All Helmholtz Award winners to date have significantly advanced the art of measuring and many of them are among the most renowned researchers in the field of metrology today", said Dr. Joachim Ullrich, President of the National Metrology Institute of Germany (PTB) and Chairman of the Helmholtz Fund.

"We are confident that this will also hold true this time." Researchers at the University of Cambridge are also distinguished with the Helmholtz Award for their method of measuring individual molecules using nano-pores, a proven method in DNA analysis. They have created a method for theoretically detecting any number of different protein molecules in the same measurement. The award will be presented on 22 June 2016 in the conference centre of the National Metrology Institute of Germany (PTB).

The Frankfurt award winners have already received several other rewards for their work: In 2013 Till Jahnke was awarded the most important young scientist award of the Deutsche Physikalische Gesellschaft, the Gustav Hertz Award. The following year, Reinhard Dörner was distinguished with the renowned Robert Wichard Pohl Award by the Deutsche Physikalische Gesellschaft. In 2015, Maksim Kunitski received an award from the "Frankfurter Förderverein für physikalische Grundlagenforschung".

Information: Prof. Reinhard Dörner, Institut für Kernphysik, Max-von-Laue-Str. 1, Tel: (069) 798-47003, doerner@atom.uni-frankfurt.de

Goethe University is a research-oriented university in the European financial centre Frankfurt founded in 1914 with purely private funds by liberally-oriented Frankfurt citizens. It is dedicated to research and education under the motto "Science for Society" and to this day continues to function as a "citizens’ university".

Many of the early benefactors were Jewish. Over the past 100 years, Goethe University has done pioneering work in the social and sociological sciences, chemistry, quantum physics, brain research and labour law. It gained a unique level of autonomy on 1 January 2008 by returning to its historic roots as a privately funded university. Today, it is among the top ten in external funding and among the top three largest universities in Germany, with three clusters of excellence in medicine, life sciences and the humanities.

Publisher: The President of Goethe University
Editor: Dr. Anke Sauter, Science Editor, International Communication, Tel: +49(0)69 798-12477, Fax +49(0)69 798-761 12531, sauter@pvw.uni-frankfurt.de
Internet: www.uni-frankfurt.de 

Dr. Anne Hardy | idw - Informationsdienst Wissenschaft

More articles from Awards Funding:

nachricht Lasagni awarded with Materials Science and Technology Prize 2017
09.10.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht Eduard Arzt receives highest award from German Materials Society
21.09.2017 | INM - Leibniz-Institut für Neue Materialien gGmbH

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>