Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Award for ground-breaking measuring methods


Five Frankfurt physicists receive the Helmholtz Award with an endowment of Euro 20,000.

This year the most important award in the field of metrology, the science of making precise measurements, was awarded to a team of five Frankfurt atomic physicists at Goethe University: Prof. Reinhard Dörner, Associate Prof. Dr. Till Jahnke, Dr. Maksim Kunitzki, Dr. Jörg Voigtsberger and Stefan Zeller. The Helmholtz award includes an endowment of Euro 20,000 and is awarded to European researchers every three years.

Prof. Reinhard Dörner (left) and Maksim Kunitski in front of the equipment used to complete the outstanding work.


The award recipients succeeded in measuring the extremely weak binding energy of helium molecules with a previously unachievable precision. Chemistry teaches us that helium as a noble gas doesn't form bonds. However, this becomes possible under certain circumstances predicted by quantum theory.

The study group under Dörner has measured this binding energy indirectly with the COLTRIMS reaction microscope developed at Goethe University. It can be used to measure the location and speed of decaying molecules at the same time with a high level of accuracy, and this data can be used to reconstruct the original configuration. The award winners focused on rare molecules composed of two or three helium atoms.

"It started with the German Research Foundation approving me for a Koselleck project with funding of over 1.25 million in 2009. This is a kind of venture capital, which the DFG uses to support experiments with a long lead time", Prof. Reinhard Dörner from the Institute for Nuclear Physics explains.

Dr. Till Jahnke laid the foundation for the equipment, then doctoral candidate Jörg Voigtsberger took over the experiment and achieved initial successes. The next doctoral candidate, Stefan Zeller, was able to make significant improvements to the equipment and to further increase the precision.

To do so, he had to direct the largest "photon canon" in Germany, the "Free Electron Laser FLASH" at the DESY research centre in Hamburg, at the extremely weakly bonded helium molecules. In this way he was able to determine the binding energy with a precision of a few nano-electron volts. This means that the binding energy of the helium molecules is one-hundred million times weaker than in a water molecule, for example.

The series of experiments culminated this past year with the dicovery of the so-called Efimov state for a helium molecule made up of three atoms. This comparatively huge molecule predicted 40 years ago by the Russian theorist Vitaly Efimov, can only exist in the tunnel effect established by quantum physics. The postdoc Maksim Kunitzki succeeded in making this measurement with the same equipment.

"All Helmholtz Award winners to date have significantly advanced the art of measuring and many of them are among the most renowned researchers in the field of metrology today", said Dr. Joachim Ullrich, President of the National Metrology Institute of Germany (PTB) and Chairman of the Helmholtz Fund.

"We are confident that this will also hold true this time." Researchers at the University of Cambridge are also distinguished with the Helmholtz Award for their method of measuring individual molecules using nano-pores, a proven method in DNA analysis. They have created a method for theoretically detecting any number of different protein molecules in the same measurement. The award will be presented on 22 June 2016 in the conference centre of the National Metrology Institute of Germany (PTB).

The Frankfurt award winners have already received several other rewards for their work: In 2013 Till Jahnke was awarded the most important young scientist award of the Deutsche Physikalische Gesellschaft, the Gustav Hertz Award. The following year, Reinhard Dörner was distinguished with the renowned Robert Wichard Pohl Award by the Deutsche Physikalische Gesellschaft. In 2015, Maksim Kunitski received an award from the "Frankfurter Förderverein für physikalische Grundlagenforschung".

Information: Prof. Reinhard Dörner, Institut für Kernphysik, Max-von-Laue-Str. 1, Tel: (069) 798-47003,

Goethe University is a research-oriented university in the European financial centre Frankfurt founded in 1914 with purely private funds by liberally-oriented Frankfurt citizens. It is dedicated to research and education under the motto "Science for Society" and to this day continues to function as a "citizens’ university".

Many of the early benefactors were Jewish. Over the past 100 years, Goethe University has done pioneering work in the social and sociological sciences, chemistry, quantum physics, brain research and labour law. It gained a unique level of autonomy on 1 January 2008 by returning to its historic roots as a privately funded university. Today, it is among the top ten in external funding and among the top three largest universities in Germany, with three clusters of excellence in medicine, life sciences and the humanities.

Publisher: The President of Goethe University
Editor: Dr. Anke Sauter, Science Editor, International Communication, Tel: +49(0)69 798-12477, Fax +49(0)69 798-761 12531,

Dr. Anne Hardy | idw - Informationsdienst Wissenschaft

More articles from Awards Funding:

nachricht Changing the Energy Landscape: Affordable Electricity for All
20.10.2016 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Emmy Noether junior research group investigates new magnetic structures for spintronics applications
11.10.2016 | Johannes Gutenberg-Universität Mainz

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>