Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Award for ground-breaking measuring methods

09.05.2016

Five Frankfurt physicists receive the Helmholtz Award with an endowment of Euro 20,000.

This year the most important award in the field of metrology, the science of making precise measurements, was awarded to a team of five Frankfurt atomic physicists at Goethe University: Prof. Reinhard Dörner, Associate Prof. Dr. Till Jahnke, Dr. Maksim Kunitzki, Dr. Jörg Voigtsberger and Stefan Zeller. The Helmholtz award includes an endowment of Euro 20,000 and is awarded to European researchers every three years.


Prof. Reinhard Dörner (left) and Maksim Kunitski in front of the equipment used to complete the outstanding work.

GU

The award recipients succeeded in measuring the extremely weak binding energy of helium molecules with a previously unachievable precision. Chemistry teaches us that helium as a noble gas doesn't form bonds. However, this becomes possible under certain circumstances predicted by quantum theory.

The study group under Dörner has measured this binding energy indirectly with the COLTRIMS reaction microscope developed at Goethe University. It can be used to measure the location and speed of decaying molecules at the same time with a high level of accuracy, and this data can be used to reconstruct the original configuration. The award winners focused on rare molecules composed of two or three helium atoms.

"It started with the German Research Foundation approving me for a Koselleck project with funding of over 1.25 million in 2009. This is a kind of venture capital, which the DFG uses to support experiments with a long lead time", Prof. Reinhard Dörner from the Institute for Nuclear Physics explains.

Dr. Till Jahnke laid the foundation for the equipment, then doctoral candidate Jörg Voigtsberger took over the experiment and achieved initial successes. The next doctoral candidate, Stefan Zeller, was able to make significant improvements to the equipment and to further increase the precision.

To do so, he had to direct the largest "photon canon" in Germany, the "Free Electron Laser FLASH" at the DESY research centre in Hamburg, at the extremely weakly bonded helium molecules. In this way he was able to determine the binding energy with a precision of a few nano-electron volts. This means that the binding energy of the helium molecules is one-hundred million times weaker than in a water molecule, for example.

The series of experiments culminated this past year with the dicovery of the so-called Efimov state for a helium molecule made up of three atoms. This comparatively huge molecule predicted 40 years ago by the Russian theorist Vitaly Efimov, can only exist in the tunnel effect established by quantum physics. The postdoc Maksim Kunitzki succeeded in making this measurement with the same equipment.

"All Helmholtz Award winners to date have significantly advanced the art of measuring and many of them are among the most renowned researchers in the field of metrology today", said Dr. Joachim Ullrich, President of the National Metrology Institute of Germany (PTB) and Chairman of the Helmholtz Fund.

"We are confident that this will also hold true this time." Researchers at the University of Cambridge are also distinguished with the Helmholtz Award for their method of measuring individual molecules using nano-pores, a proven method in DNA analysis. They have created a method for theoretically detecting any number of different protein molecules in the same measurement. The award will be presented on 22 June 2016 in the conference centre of the National Metrology Institute of Germany (PTB).

The Frankfurt award winners have already received several other rewards for their work: In 2013 Till Jahnke was awarded the most important young scientist award of the Deutsche Physikalische Gesellschaft, the Gustav Hertz Award. The following year, Reinhard Dörner was distinguished with the renowned Robert Wichard Pohl Award by the Deutsche Physikalische Gesellschaft. In 2015, Maksim Kunitski received an award from the "Frankfurter Förderverein für physikalische Grundlagenforschung".

Information: Prof. Reinhard Dörner, Institut für Kernphysik, Max-von-Laue-Str. 1, Tel: (069) 798-47003, doerner@atom.uni-frankfurt.de

Goethe University is a research-oriented university in the European financial centre Frankfurt founded in 1914 with purely private funds by liberally-oriented Frankfurt citizens. It is dedicated to research and education under the motto "Science for Society" and to this day continues to function as a "citizens’ university".

Many of the early benefactors were Jewish. Over the past 100 years, Goethe University has done pioneering work in the social and sociological sciences, chemistry, quantum physics, brain research and labour law. It gained a unique level of autonomy on 1 January 2008 by returning to its historic roots as a privately funded university. Today, it is among the top ten in external funding and among the top three largest universities in Germany, with three clusters of excellence in medicine, life sciences and the humanities.

Publisher: The President of Goethe University
Editor: Dr. Anke Sauter, Science Editor, International Communication, Tel: +49(0)69 798-12477, Fax +49(0)69 798-761 12531, sauter@pvw.uni-frankfurt.de
Internet: www.uni-frankfurt.de 

Dr. Anne Hardy | idw - Informationsdienst Wissenschaft

More articles from Awards Funding:

nachricht RNA: a vicious pathway to cancer ?
14.08.2017 | Goethe-Universität Frankfurt am Main

nachricht Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy
28.06.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>