Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016

Great success for cutting-edge research: Kiel University receives new collaborative research centre

Research into highly sensitive magnetic field sensors has been the focus of nano research at Kiel University for a number of years. On Wednesday, 25 May, the German Research Foundation (DFG) approved the following collaborative research centre (CRC) 1261 "Magnetoelectric Sensors:


Kiel University will receive 11 million Euros over the next four years for research into new biomagnetic sensors.

Photo/copyright: Christine Kirchhof

From Composite Materials to Biomagnetic Diagnostics" representing another milestone in this development. The researchers will receive around 11 million Euros during the first funding period for an initial four years to research magnetic field sensors for use in biomagnetic diagnostics.

"In the new CRC we are expecting to research completely new types of magnetic field sensor concepts, which are specifically interpreted on the basis of scientific and diagnostic issues in neurology and cardiology as a result of the strong interdisciplinary collaboration between physics, materials science, electrical engineering and medicine.”

This is how the spokesman of the CRC, Professor Eckhard Quandt, describes the objective of the initiative. This will also benefit Kiel overall as a science location. It will create 26 new jobs for scientists. In addition, research collaboration in the region will be extended through cooperation between the university, the University Medical Center (UKSH) and the Fraunhofer Institute for Silicon Technology in Itzehoe (ISIT), says Quandt.

"This new interdisciplinary initiative therefore noticeably strengthens our research focus, Kiel Nano, Surface and Interface Science", says Kiel University's President Professor Lutz Kipp. "Its potential areas of application in medical diagnostics make it clear how worthwhile the investment in this research is. The renewal of the funding worth millions is impressive evidence of the excellent conditions that we have created in Kiel and at Kiel University for research into issues concerning nanotechnology and surface sciences in the past. This success is also an important foundation for new ideas at Kiel University for the forthcoming excellence initiative."

More specifically, scientists will be working on recording brain and heart currents via their magnetic fields in the new CRC 1261. Previous research has already made it possible to improve the detection threshold to such an extent that biomagnetic signals from the brain or heart can now be measured. Magnetic measurements promise improved diagnosis, for example in relation to spatial resolution and/or for examinations over a long period of time as a supplement or alternative to the established electrical measurements – such as the electroencephalography (EEG) or the electrocardiography (ECG).

Although this is already possible today, the measurements have so far been associated with considerable costs and efforts so that these technologies have found it difficult to establish themselves in medical practice. In order for the results not to be distorted, external magnetic fields have to be strictly screened and conventional biomagnetic interfaces must be cooled to approximately -270 degrees Celsius, which is extremely complex. However, the new sensors, which the researchers in CRC 1261 want to develop, should be able to make do without the complex cooling and even screening in the long term. These sensors could be used, for example, to detect pathological brain activity and to stimulate demand-responsive areas of the brain to treat epileptic fits or Parkinson's symptoms.

New signal processing strategies and highly sensitive sensors for extremely small magnetic fields are a prerequisite for this. The Faculties of Engineering, Mathematics and Natural Sciences, and Medicine at Kiel University are involved in their development, starting with the physical basics, via production and characterisation to application in cardiology, neurology, neuro-paediatrics and medical psychology. Other partners are the UKSH and the Fraunhofer Institute for Silicon Technology in Itzehoe.

Photos are available for download under:
http://www.uni-kiel.de/download/pm/2016/2016-172-1.jpg
Professor Eckhard Quandt is the spokesman of the new CRC at Kiel University.
Photo/copyright: Jürgen Haacks/Kiel University

http://www.uni-kiel.de/download/pm/2016/2016-172-2.jpg
Kiel University will receive 11 million Euros over the next four years for research into new biomagnetic sensors.
Photo/copyright: Christine Kirchhof

Contact:
Professor Dr.-Ing. Eckhard Quandt
Institute for Materials Science at Kiel University
email: eq@tf.uni-kiel.de

Kiel University
Press, Communication and Marketing, Dr Boris Pawlowski
Postal address: D-24098 Kiel, Germany, Telephone: +49 (0)431 880-2104, Fax: +49 (0)431 880-1355
E-mail: presse@uv.uni-kiel.de, Internet: www.uni-kiel.de
Twitter: www.twitter.com/kieluni, Facebook: www.facebook.com/kieluni

Weitere Informationen:

http://www.uni-kiel.de/pressemeldungen/index.php?pmid=2016-172-sfb1261&lang=...

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel

More articles from Awards Funding:

nachricht Tracking down pest control strategies
31.01.2018 | Technische Universität Dresden

nachricht Polymers and Fuels from Renewable Resources
29.01.2018 | DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V.

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>