Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


WSU innovation improves drowsy driver detection


Researchers at Washington State University Spokane have developed a new way to detect when drivers are about to nod off behind the wheel.

Their recently patented technology is based on steering wheel movements—which are more variable in drowsy drivers—and offers an affordable and more reliable alternative to currently available video-based driver drowsiness detection systems.

“Video-based systems that use cameras to detect when a car is drifting out of its lane are cumbersome and expensive,” said Hans Van Dongen, research professor at the WSU Sleep and Performance Research Center. “They don’t work well on snow-covered or curvy roads, in darkness or when lane markers are faded or missing.

“Our invention provides an inexpensive and user-friendly technology that overcomes these limitations and can help catch fatigue earlier, well before accidents are likely to happen,” said Van Dongen, who developed the technology with postdoctoral research fellow Pia Forsman.

The science behind the invention was published in the journal Accident Analysis & Prevention. Researchers analyzed data from two laboratory experiments conducted at WSU Spokane.

Twenty-nine participants were on a simulated 10-day night shift schedule that caused moderate levels of fatigue, as assessed by their performance on a widely used alertness test known as the psychomotor vigilance task (PVT). During each night shift, participants spent four 30-minute sessions on a high-fidelity driving simulator, which captured data for 87 different metrics related to speed, acceleration, steering, lane position and other factors.

Data analysis indicated that the two factors that best predicted fatigue were variability in steering wheel movements and variability in lane position.
Researchers then showed that data on steering wheel variability can be used to predict variability in lane position early on, making it possible to detect driver drowsiness before the car drifts out of its lane.

“We wanted to find out whether there may be a better technique for measuring driver drowsiness before fatigue levels are critical and a crash is imminent,” Van Dongen said. “Our invention provides a solid basis for the development of an early detection system for moderate driver drowsiness. It could also be combined with existing systems to extend their functionality in detecting severe driver drowsiness.”

The solution uses inexpensive, easy-to-install parts—including a sensor that measures the position of the steering wheel—and could be included as part of a factory installation or as an aftermarket accessory.

A patent for this method of measuring driver drowsiness has been assigned to WSU under patent number 8676444, with Van Dongen and Forsman as the inventors.

The paper describing their work was published in Vol. 50 of Accident Analysis & Prevention with Forsman—now with the University of Helsinki in Finland—as the lead author. Coauthors include Van Dongen; WSU researchers Bryan Vila and Robert Short; and Christopher Mott of Pulsar Informatics, a private firm that develops behavioral alertness technology. 


Hans Van Dongen, WSU Spokane Sleep and Performance Research Center, 509-358-7755,

Judith Van Dongen, WSU Spokane/WSU News, 509-358-7524,

Hans Van Dongen | Eurek Alert!
Further information:

Further reports about: Accident Analysis Informatics Performance Prevention Pulsar acceleration invention variability

More articles from Automotive Engineering:

nachricht ACOSAR: standardizing merged numerical simulation and real tests
06.10.2015 | Kompetenzzentrum - Das virtuelle Fahrzeug Forschungsgesellschaft mbH

nachricht The Drive for Digital Cars
24.09.2015 | Siemens AG

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

Im Focus: Simple detection of magnetic skyrmions

New physical effect: researchers discover a change of electrical resistance in magnetic whirls

At present, tiny magnetic whirls – so called skyrmions – are discussed as promising candidates for bits in future robust and compact data storage devices. At...

Im Focus: High-speed march through a layer of graphene

In cooperation with the Center for Nano-Optics of Georgia State University in Atlanta (USA), scientists of the Laboratory for Attosecond Physics of the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität have made simulations of the processes that happen when a layer of carbon atoms is irradiated with strong laser light.

Electrons hit by strong laser pulses change their location on ultrashort timescales, i.e. within a couple of attoseconds (1 as = 10 to the minus 18 sec). In...

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

New microscopy technology augments surgeon's view for greater accuracy

07.10.2015 | Medical Engineering

Discovery about new battery overturns decades of false assumptions

07.10.2015 | Power and Electrical Engineering

Ancient rocks record first evidence for photosynthesis that made oxygen

07.10.2015 | Earth Sciences

More VideoLinks >>>