Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

WSU innovation improves drowsy driver detection

24.04.2014

Researchers at Washington State University Spokane have developed a new way to detect when drivers are about to nod off behind the wheel.

Their recently patented technology is based on steering wheel movements—which are more variable in drowsy drivers—and offers an affordable and more reliable alternative to currently available video-based driver drowsiness detection systems.

“Video-based systems that use cameras to detect when a car is drifting out of its lane are cumbersome and expensive,” said Hans Van Dongen, research professor at the WSU Sleep and Performance Research Center. “They don’t work well on snow-covered or curvy roads, in darkness or when lane markers are faded or missing.

“Our invention provides an inexpensive and user-friendly technology that overcomes these limitations and can help catch fatigue earlier, well before accidents are likely to happen,” said Van Dongen, who developed the technology with postdoctoral research fellow Pia Forsman.

The science behind the invention was published in the journal Accident Analysis & Prevention. Researchers analyzed data from two laboratory experiments conducted at WSU Spokane.

Twenty-nine participants were on a simulated 10-day night shift schedule that caused moderate levels of fatigue, as assessed by their performance on a widely used alertness test known as the psychomotor vigilance task (PVT). During each night shift, participants spent four 30-minute sessions on a high-fidelity driving simulator, which captured data for 87 different metrics related to speed, acceleration, steering, lane position and other factors.

Data analysis indicated that the two factors that best predicted fatigue were variability in steering wheel movements and variability in lane position.
Researchers then showed that data on steering wheel variability can be used to predict variability in lane position early on, making it possible to detect driver drowsiness before the car drifts out of its lane.

“We wanted to find out whether there may be a better technique for measuring driver drowsiness before fatigue levels are critical and a crash is imminent,” Van Dongen said. “Our invention provides a solid basis for the development of an early detection system for moderate driver drowsiness. It could also be combined with existing systems to extend their functionality in detecting severe driver drowsiness.”

The solution uses inexpensive, easy-to-install parts—including a sensor that measures the position of the steering wheel—and could be included as part of a factory installation or as an aftermarket accessory.

A patent for this method of measuring driver drowsiness has been assigned to WSU under patent number 8676444, with Van Dongen and Forsman as the inventors.

The paper describing their work was published in Vol. 50 of Accident Analysis & Prevention with Forsman—now with the University of Helsinki in Finland—as the lead author. Coauthors include Van Dongen; WSU researchers Bryan Vila and Robert Short; and Christopher Mott of Pulsar Informatics, a private firm that develops behavioral alertness technology. 

Contacts:

Hans Van Dongen, WSU Spokane Sleep and Performance Research Center, 509-358-7755, hvd@wsu.edu

Judith Van Dongen, WSU Spokane/WSU News, 509-358-7524, jcvd@wsu.edu

Hans Van Dongen | Eurek Alert!
Further information:
https://news.wsu.edu/2014/04/22/wsu-innovation-improves-drowsy-driver-detection/#.U1jJvGGKDcs

Further reports about: Accident Analysis Informatics Performance Prevention Pulsar acceleration invention variability

More articles from Automotive Engineering:

nachricht ShAPEing the future of magnesium car parts
23.08.2017 | DOE/Pacific Northwest National Laboratory

nachricht Improved Performance thanks to Reduced Weight
24.07.2017 | Technische Universität Chemnitz

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>