Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Worldwide unique standards for automobile development

04.11.2014

Ceremonious opening of the modernised vehicle wind tunnel at the University of Stuttgart

The largest vehicle wind tunnel at the University of Stuttgart has been put back into operation after undergoing several months of modernisation work by the Research Institute of Automotive Engineering and Vehicle Engines Stuttgart (FKFS). Three patented world premieres are being used in the new wind tunnel. These enable real road conditions to be depicted in such a precise way like never before.


Wind tunnel

University of Stuttgart (IVK)

The wind tunnel as the first of its kind worldwide has a modular alternating conveyor belt system for production and racing cars as well as a flow stabiliser and a crosswind generator. The objectives of modern vehicle construction such as the reduction of CO2 emissions and the inherent noises of a vehicle as well as the increase in cost efficiency through optimisation with flow resistance and in the development process can be achieved even more easily through the new Stuttgart test and measuring facility.

On Monday, 3rd November 2014 the ceremonious opening of the modernised vehicle wind tunnel took place on the Campus in Vaihingen upon the invitation of the University of Stuttgart and the FKFS in the presence of numerous invited guests from science, the automobile industry and politics.

In his welcome speech Prof. Wolfram Ressel, Rector of the University of Stuttgart, described the wind tunnel as a high-exposure example of the tradition of great research performances by the University of Stuttgart in the field of vehicle and engine technology, “The modernised wind tunnel is just one in a series with the Stuttgart driving simulator or the vehicle test benches for different types of drive and many other high tech systems the university is able to show in order not only to be ahead with its own research in future but also to cooperate with partners from industry and science“, according to Prof. Ressel.

The Rector invited the attending industrial representative to also expand the principle of public-private-partnerships that had been so impressively demonstrated with the wind tunnel to other fields of automobile research and development work.

"It is becoming increasingly important for modern cars to reduce air resistance via improved aerodynamics. And as a politician I am well aware of how important it is to overcome resistances", said Minister of Finance and Economics Dr. Nils Schmid.

"In the field of mobility a slight resistance means: fuel is saved through this and the range of electric cars is extended. Thus the modernised wind tunnel here at the FKFS makes an important contribution to the sustainability of the automobile location. It fits in well with the strategy of the state government of making Baden-Württemberg a pioneer in sustainable mobility."

Prof. Jochen Wiedemann, Managing Director of the Institute for Combustion Engines and Automotive Engineering (IVK) at the University of Stuttgart and Chairman of the Board at FKFS, explained the modernisation of the wind tunnel and thanked the long standing contractual customers Adam Opel AG, Daimler AG and MTS Systems Cooperation, who made the wind tunnel and its continuous modernisation possible in the first place.

He pointed out that a total of 15 million Euros had been invested in the third modernisation of the wind tunnel and described the technical further development: “What the new inventions, that were so innovative and so important to us that we protected them with registered trademarks and three patents, meant to us was being able to predict the industrial measurement and research requirement of the future. We succeeded in portraying the reality of the road journey with our new wind tunnel technology as accurately as never before“, according to Prof. Wiedemann.

Further information:
Dr. Hans-Herwig Geyer, University Communication at the University of Stuttgart, Tel.: 0711/685-82555, Email: hans-herwig.geyer@hkom.uni-stuttgart.de
Armin Michelbach, Institute for Combustion Engines and Automotive Engineering at the University of Stuttgart, Tel: 0711/63110, Email: armin.michelbach@ivk.uni-stuttgart.de

Andrea Mayer-Grenu | Universität Stuttgart
Further information:
http://www.uni-stuttgart.de/

More articles from Automotive Engineering:

nachricht When your car knows how you feel
20.12.2017 | FZI Forschungszentrum Informatik am Karlsruher Institut für Technologie

nachricht Did you know how many parts of your car require infrared heat?
23.10.2017 | Heraeus Noblelight GmbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>