Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Worldwide unique standards for automobile development

04.11.2014

Ceremonious opening of the modernised vehicle wind tunnel at the University of Stuttgart

The largest vehicle wind tunnel at the University of Stuttgart has been put back into operation after undergoing several months of modernisation work by the Research Institute of Automotive Engineering and Vehicle Engines Stuttgart (FKFS). Three patented world premieres are being used in the new wind tunnel. These enable real road conditions to be depicted in such a precise way like never before.


Wind tunnel

University of Stuttgart (IVK)

The wind tunnel as the first of its kind worldwide has a modular alternating conveyor belt system for production and racing cars as well as a flow stabiliser and a crosswind generator. The objectives of modern vehicle construction such as the reduction of CO2 emissions and the inherent noises of a vehicle as well as the increase in cost efficiency through optimisation with flow resistance and in the development process can be achieved even more easily through the new Stuttgart test and measuring facility.

On Monday, 3rd November 2014 the ceremonious opening of the modernised vehicle wind tunnel took place on the Campus in Vaihingen upon the invitation of the University of Stuttgart and the FKFS in the presence of numerous invited guests from science, the automobile industry and politics.

In his welcome speech Prof. Wolfram Ressel, Rector of the University of Stuttgart, described the wind tunnel as a high-exposure example of the tradition of great research performances by the University of Stuttgart in the field of vehicle and engine technology, “The modernised wind tunnel is just one in a series with the Stuttgart driving simulator or the vehicle test benches for different types of drive and many other high tech systems the university is able to show in order not only to be ahead with its own research in future but also to cooperate with partners from industry and science“, according to Prof. Ressel.

The Rector invited the attending industrial representative to also expand the principle of public-private-partnerships that had been so impressively demonstrated with the wind tunnel to other fields of automobile research and development work.

"It is becoming increasingly important for modern cars to reduce air resistance via improved aerodynamics. And as a politician I am well aware of how important it is to overcome resistances", said Minister of Finance and Economics Dr. Nils Schmid.

"In the field of mobility a slight resistance means: fuel is saved through this and the range of electric cars is extended. Thus the modernised wind tunnel here at the FKFS makes an important contribution to the sustainability of the automobile location. It fits in well with the strategy of the state government of making Baden-Württemberg a pioneer in sustainable mobility."

Prof. Jochen Wiedemann, Managing Director of the Institute for Combustion Engines and Automotive Engineering (IVK) at the University of Stuttgart and Chairman of the Board at FKFS, explained the modernisation of the wind tunnel and thanked the long standing contractual customers Adam Opel AG, Daimler AG and MTS Systems Cooperation, who made the wind tunnel and its continuous modernisation possible in the first place.

He pointed out that a total of 15 million Euros had been invested in the third modernisation of the wind tunnel and described the technical further development: “What the new inventions, that were so innovative and so important to us that we protected them with registered trademarks and three patents, meant to us was being able to predict the industrial measurement and research requirement of the future. We succeeded in portraying the reality of the road journey with our new wind tunnel technology as accurately as never before“, according to Prof. Wiedemann.

Further information:
Dr. Hans-Herwig Geyer, University Communication at the University of Stuttgart, Tel.: 0711/685-82555, Email: hans-herwig.geyer@hkom.uni-stuttgart.de
Armin Michelbach, Institute for Combustion Engines and Automotive Engineering at the University of Stuttgart, Tel: 0711/63110, Email: armin.michelbach@ivk.uni-stuttgart.de

Andrea Mayer-Grenu | Universität Stuttgart
Further information:
http://www.uni-stuttgart.de/

More articles from Automotive Engineering:

nachricht 3D scans for the automotive industry
16.01.2017 | Julius-Maximilians-Universität Würzburg

nachricht Improvement of the operating range and increasing of the reliability of integrated circuits
09.11.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>