Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New nanoscale engineering breakthrough points to hydrogen-powered vehicles

07.03.2007
Researchers at the U.S. Department of Energy's Argonne National Laboratory have developed an advanced concept in nanoscale catalyst engineering – a combination of experiments and simulations that will bring polymer electrolyte membrane fuel cells for hydrogen-powered vehicles closer to massive commercialization.

The results of their findings identify a clear trend in the behavior of extended and nanoscale surfaces of platinum-bimetallic alloy. Additionally, the techniques and concepts derived from the research program are expected to make overarching contributions to other areas of science well beyond the focus on electrocatalysis.

The Argonne researchers, Nenad Markovic and Vojislav Stamenkovic, published related results last month in Science and this month in Nature Materials on the behavior of single crystal and polycrystalline platinum alloy surfaces. The researchers discovered that the nanosegregated platinum-nickel alloy surface has unique catalytic properties, opening up important new directions for the development of active and stable practical cathode catalysts in fuel cells.

These scientific accomplishments together provide a solid foundation for the development of hydrogen-powered vehicles, as basic research brings value of society today by helping to lay the foundation for tomorrow's technological breakthroughs. "Understanding catalysis is a grand challenge of nanoscience that is now coming within reach," said George Crabtree, director of Argonne's Materials Science Division. "The systematic work that Voya and Nenad are doing is a major step toward transforming catalysis from an empirical art to a fundamental science."

Their experiments and approach sought to substantially improve and reduce platinum loading as the oxygen-reduction catalyst. The research identified a fundamental relationship in electrocatalytic trends on surfaces between the experimentally determined surface electronic structure (the d -band centre) and activity for the oxygen-reduction reaction. This relationship exhibits "volcano-type" behavior, where the maximum catalytic activity is governed by a balance between adsorption energies of reactive intermediates and surface coverage by spectator (blocking) species.

The electrocatalytic trends established for extended surfaces explain the activity pattern of nanocatalysts and provide a fundamental basis for the enhancement of cathode catalysts. By combining experiments with simulations in the quest for surfaces with desired activity, the researchers developed an advanced concept in nanoscale catalyst engineering.

"In the past, theoretical connections have been suggested between electronic behavior and catalytic activity," explained Markovic. "Our work represents the first time that the connections have been identified experimentally. For us, this development constitutes the beginning of more breakthrough advances in nanocatalysts."

According to Stamenkovic, "Our study demonstrates the potential of new analytical tools for characterizing nanoscale surfaces in order to fine tune their properties in a desired direction. We have identified a cathode surface that is capable of achieving and even exceeding the target for catalytic activity with improved stability. This discovery sets a new bar for catalytic activity of the cathodic reaction in fuel cells."

Through continued research combining nanoscale fabrication, electrochemical characterization and numerical simulation a new generation of multi-metallic systems with engineered nanoscale surfaces is on the horizon. Argonne's Center for Nanoscale Materials, Advanced Photon Source and Electron Microscopy Center will enable some of this research.

"We have got crucial support from Argonne management to set up the new labs and launch research directions, which would establish Argonne as a leading center in basic sciences related to energy conversion." said Stamenkovic.

Their lab includes a custom built three-chamber UHV system equipped with the state-of-the-art surface sensitive tools, including Low Energy Ion Scattering Spectroscopy (LEISS), Auger Electron Spectroscopy (AES), angle resolved X-ray photoemission spectroscopy (XPS with monochromator), ultraviolet photoelectron spectroscopy

(UPS), Low Energy Electron Diffraction (LEED) optics, sputtering guns, thermal evaporators, dual hemispherical analyzers, and chamber with scanning tunneling microscopy (STM) and atomic force microscopy AFM. All three chambers are connected to each other but they can also work as independent chambers, making it possible to transfer samples from one to the other unit in order to get detailed surface characterization or to make desirable surface modification.

"We hope that this research program will lead the nation to more secure energy independence and a cleaner environment for future generations," Markovic said.

Collaborators on the research were Bongjin Mun and Philip Ross at DOE's Lawrence Berkeley National Laboratory, Matthias Arenz and Karl Mayrhofer from Technical University of Munich, Christopher Lucas from the University of Liverpool and Guofeng Wang from the University of South Carolina.

This research was funded by DOE's Office of Basic Energy Sciences and by General Motors. The Nature Materials report is on-line at www.nature.com/nmat/journal/vaop/ncurrent/index.html. The Science paper published in January is online at www.sciencemag.org/content/vol315/issue5811/index.dtl.

The nation's first national laboratory, Argonne National Laboratory conducts basic and applied scientific research across a wide spectrum of disciplines, ranging from high-energy physics to climatology and biotechnology. Since 1990, Argonne has worked with more than 600 companies and numerous federal agencies and other organizations to help advance America's scientific leadership and prepare the nation for the future. Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

For more information, please contact Sylvia Carson (630/252-5510 or scarson@anl.gov) at Argonne.

Sylvia Carson | EurekAlert!
Further information:
http://www.anl.gov

More articles from Automotive Engineering:

nachricht Did you know how many parts of your car require infrared heat?
23.10.2017 | Heraeus Noblelight GmbH

nachricht Two intelligent vehicles are better than one
04.10.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>