Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Concept vehicle illustrating new options for military combat vehicles to be unveiled

12.09.2005


Improving survivability and mobility


The ULTRA armored patrol vehicle was developed to illustrate design and technology options for increased survivablity and mobility for future military combat vehicles vehicles.



A concept vehicle designed to illustrate potential technology options for improving survivability and mobility in future military combat vehicles will be shown publicly for the first time Sept. 13-15 at a military technology meeting in Virginia.

The event, "Modern Day Marine Expo," will be held at the Marine Corps Air Facility in Quantico, Va.


The concept vehicle, known as the ULTRA AP (Armored Patrol), was built to help the U.S. military evaluate multiple science and technology options – including ballistic and mine protection – that could benefit future vehicle design. The concept vehicle combines proven vehicle technologies with advanced materials and engineering concepts.

Research and development for the ULTRA has been conducted by the Georgia Tech Research Institute (GTRI), which led a unique team of research engineers from both GTRI and the automotive industry. The research initiative has been sponsored by the Office of Naval Research (ONR).

"By bringing together experienced commercial vehicle designers with experts in advanced materials and cutting-edge engineering, we are providing a test bed for evaluating technologies that can help the military develop true ’leap-ahead’ concepts," said David Parekh, GTRI’s deputy director. "By including persons with high-performance automotive engineering and NASCAR expertise as part of our team, we were able to root this advanced concepts project in real-world vehicle design."

The ULTRA AP emphasizes high-output diesel power combined with advanced armor and a fully modern chassis. The design matches the best of modern commercial automotive technology with racing experience, explained Gary Caille, a GTRI principal research engineer.

In the ULTRA AP, the GTRI/industry team has made improvements in two key areas by taking a systems approach to survivability and safety:

Survivability: This factor involves a vehicle’s ability to shield occupants from hostile action. The ULTRA AP will feature novel design concepts and research advances in lightweight and cost-effective armor to maximize capability and protection. The new armor was designed at GTRI in partnership with the Georgia Tech School of Materials Science and Engineering. The vehicle also incorporates a "blast bucket" designed to provide ballistic, blast and enhanced roll-over protection. New vehicle designs must incorporate dramatically increased resistance to explosions caused by mines and improvised explosive devices, Caille noted.

Safety with Performance: The ULTRA design explored the use of on-board computers to integrate steering, suspension and brakes to provide an unparalleled level of mobility and safety, Caille added. The new vehicle’s integrated chassis represents an advancement over the most advanced current production vehicles.

The ULTRA AP project has been supported by the Office of Naval Research (ONR) as part of its mission of investigating and assessing new technologies for military use. By providing the ULTRA AP concept vehicle for the U.S. Marine Corps and U.S. Army to study, ONR expects to spur innovative thinking and gather feedback on the ideas being demonstrated.

In developing the ULTRA AP, GTRI brought together a group of industry professionals that included Scott Badenoch, an auto industry advanced development and racing professional; Tom Moore, former Chrysler vice president of Liberty Operations, the company’s advanced engineering center; Walt Wynbelt, former program executive officer with the U.S. Army Tank Automotive and Armaments Command, and Dave McLellan, the former Corvette chief engineer for General Motors.

The ULTRA project is linked directly to "e-safety," an emerging automotive concept that combines computers and advanced technologies to make driving safer, McLellan noted. In e-safety, night driving systems and stability control add security, while radar systems – already available in Europe – actually slow vehicles automatically under certain conditions.

Kirk Englehardt | EurekAlert!
Further information:
http://www.gtri.gatech.edu

More articles from Automotive Engineering:

nachricht Improved Performance thanks to Reduced Weight
24.07.2017 | Technische Universität Chemnitz

nachricht New Headlamp Dimension: Fully Adaptive Light Distribution in Real Time
29.06.2017 | Universität Stuttgart

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>