Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hydrogen vehicles making impressive progress toward commercialization

21.07.2008
But continued government support needed before substantial reductions are seen in US gasoline usage and carbon emissions

A transition to hydrogen vehicles could greatly reduce U.S. oil dependence and carbon dioxide emissions, says a new congressionally mandated report from the National Research Council, but making hydrogen vehicles competitive in the automotive market will not be easy.

While the development of fuel cell and hydrogen production technology over the past several years has been impressive, challenges remain. Vehicle costs are high, and the U.S. currently lacks the infrastructure to produce and widely distribute hydrogen to consumers. These obstacles could be overcome, however, with continued support for research and development and firm commitments from the automotive industry and the federal government, concluded the committee that wrote the report.

Light-duty vehicles, such as cars, SUVs, and pickup trucks, are responsible for 44 percent of the oil used in the United States and over 20 percent of the carbon dioxide emitted. Concerns over climate change, oil imports, and recent spikes in gasoline prices have spurred interest in the development of alternative fuels. In 2003, President Bush announced a $1.2 billion initiative to encourage development of hydrogen production technology and fuel cell vehicles, which are powered through a chemical reaction between hydrogen and oxygen and emit only water and heat as exhaust.

The committee estimated the maximum number of hydrogen vehicles that could be on the road in the coming decades, assuming that practical technical goals are met, that consumers want hydrogen cars, and that government policies are in place to help drive the transition from oil to hydrogen fuel. The findings therefore represent potential best-case scenarios rather than predictions.

According to the committee, it will take many years before hydrogen vehicles will significantly penetrate the light-duty fleet, even though technological developments have been progressing rapidly. Production of hydrogen vehicles could increase significantly by 2015. At this stage, their cost -- although dropping rapidly -- would still need to be heavily subsidized for consumers. The maximum practicable number of hydrogen vehicles that could be on the road by 2020 is 2 million, says the report. By 2023, the total cost of fuel cell vehicles, including the cost of hydrogen fuel over a vehicle's lifetime, could become competitive with conventional vehicles. At that point, the number of hydrogen vehicles on the road could grow rapidly, to nearly 60 million in 2035 and 200 million by 2050.

The committee also calculated the investments, both public and private, that would be needed to make a complete transition from oil to hydrogen fuel. These costs include research and development, vehicle deployment, and establishing infrastructure. According to the committee, government support via strong policy initiatives as well as funding would be needed until at least 2023. The cost to the government would be about $55 billion between 2008 and 2023; private industry would be expected to invest $145 billion over that same time period. To put these numbers into perspective, the government subsidy for ethanol fuel could grow to $15 billion per year by 2020.

The shift toward hydrogen fuel would not have a large impact on oil usage or greenhouse gas emissions until hydrogen vehicles make up a significant portion of the market. If hydrogen vehicles eventually took over the market, there would be great decreases in both, although the overall effect on greenhouse gas emissions would depend upon how the hydrogen fuel was produced. The committee compared these reductions with those that might be achieved by either improving the fuel efficiency of conventional vehicles or by converting to biofuels. Because they can be implemented more rapidly, both of these options could produce reductions in oil use and emissions faster than hydrogen, but after about 2040, hydrogen would become more effective.

The greatest possible reductions would occur if biofuels, fuel-efficient conventional vehicles, and hydrogen vehicles are all pursued simultaneously, rather than seen as competitors. This "portfolio approach," if accompanied by government policies driving a transition toward reduced oil use and low-carbon fuels, could reduce greenhouse gas emissions from cars and trucks to less than 20 percent of current levels and could nearly eliminate oil demand for these vehicles by 2050, the committee said.

Rebecca Alvania | EurekAlert!
Further information:
http://www.nas.edu
http://NATIONAL-ACADEMIES.ORG

More articles from Automotive Engineering:

nachricht 3D scans for the automotive industry
16.01.2017 | Julius-Maximilians-Universität Würzburg

nachricht Improvement of the operating range and increasing of the reliability of integrated circuits
09.11.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Explaining how 2-D materials break at the atomic level

18.01.2017 | Materials Sciences

Data analysis optimizes cyber-physical systems in telecommunications and building automation

18.01.2017 | Information Technology

Reducing household waste with less energy

18.01.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>