Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hydrogen vehicles making impressive progress toward commercialization

21.07.2008
But continued government support needed before substantial reductions are seen in US gasoline usage and carbon emissions

A transition to hydrogen vehicles could greatly reduce U.S. oil dependence and carbon dioxide emissions, says a new congressionally mandated report from the National Research Council, but making hydrogen vehicles competitive in the automotive market will not be easy.

While the development of fuel cell and hydrogen production technology over the past several years has been impressive, challenges remain. Vehicle costs are high, and the U.S. currently lacks the infrastructure to produce and widely distribute hydrogen to consumers. These obstacles could be overcome, however, with continued support for research and development and firm commitments from the automotive industry and the federal government, concluded the committee that wrote the report.

Light-duty vehicles, such as cars, SUVs, and pickup trucks, are responsible for 44 percent of the oil used in the United States and over 20 percent of the carbon dioxide emitted. Concerns over climate change, oil imports, and recent spikes in gasoline prices have spurred interest in the development of alternative fuels. In 2003, President Bush announced a $1.2 billion initiative to encourage development of hydrogen production technology and fuel cell vehicles, which are powered through a chemical reaction between hydrogen and oxygen and emit only water and heat as exhaust.

The committee estimated the maximum number of hydrogen vehicles that could be on the road in the coming decades, assuming that practical technical goals are met, that consumers want hydrogen cars, and that government policies are in place to help drive the transition from oil to hydrogen fuel. The findings therefore represent potential best-case scenarios rather than predictions.

According to the committee, it will take many years before hydrogen vehicles will significantly penetrate the light-duty fleet, even though technological developments have been progressing rapidly. Production of hydrogen vehicles could increase significantly by 2015. At this stage, their cost -- although dropping rapidly -- would still need to be heavily subsidized for consumers. The maximum practicable number of hydrogen vehicles that could be on the road by 2020 is 2 million, says the report. By 2023, the total cost of fuel cell vehicles, including the cost of hydrogen fuel over a vehicle's lifetime, could become competitive with conventional vehicles. At that point, the number of hydrogen vehicles on the road could grow rapidly, to nearly 60 million in 2035 and 200 million by 2050.

The committee also calculated the investments, both public and private, that would be needed to make a complete transition from oil to hydrogen fuel. These costs include research and development, vehicle deployment, and establishing infrastructure. According to the committee, government support via strong policy initiatives as well as funding would be needed until at least 2023. The cost to the government would be about $55 billion between 2008 and 2023; private industry would be expected to invest $145 billion over that same time period. To put these numbers into perspective, the government subsidy for ethanol fuel could grow to $15 billion per year by 2020.

The shift toward hydrogen fuel would not have a large impact on oil usage or greenhouse gas emissions until hydrogen vehicles make up a significant portion of the market. If hydrogen vehicles eventually took over the market, there would be great decreases in both, although the overall effect on greenhouse gas emissions would depend upon how the hydrogen fuel was produced. The committee compared these reductions with those that might be achieved by either improving the fuel efficiency of conventional vehicles or by converting to biofuels. Because they can be implemented more rapidly, both of these options could produce reductions in oil use and emissions faster than hydrogen, but after about 2040, hydrogen would become more effective.

The greatest possible reductions would occur if biofuels, fuel-efficient conventional vehicles, and hydrogen vehicles are all pursued simultaneously, rather than seen as competitors. This "portfolio approach," if accompanied by government policies driving a transition toward reduced oil use and low-carbon fuels, could reduce greenhouse gas emissions from cars and trucks to less than 20 percent of current levels and could nearly eliminate oil demand for these vehicles by 2050, the committee said.

Rebecca Alvania | EurekAlert!
Further information:
http://www.nas.edu
http://NATIONAL-ACADEMIES.ORG

More articles from Automotive Engineering:

nachricht Improvement of the operating range and increasing of the reliability of integrated circuits
09.11.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

nachricht New algorithm for optimized stability of planar-rod objects
11.08.2016 | Institute of Science and Technology Austria

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>