Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Experiencing virtual products

An electric car window slides smoothly upward at the press of a button. While power windows are certainly convenient, they can also pose a safety risk.

For instance, if a child puts their hand out the window to wave to a friend, the window must stop moving immediately or there could be serious consequences: Tiny fingers can easily get jammed, or the window's mechanism may be damaged.

For the first time, the Functional DMU project has enabled Fraunhofer researchers to create a virtual product that can simulate the complex interaction between electrical and mechanical components – such as those used for power windows and convertible rooftop systems.

While computer-supported test models have become part of everyday production activities, not all process chain components can be simulated. "The Digital Mock-Up (DMU) is a virtual model that represents a product's structure and geometry. DMU is today’s standard in virtual product development," says Dr. André Stork of the Fraunhofer Institute for Computer Graphics (IGD) in Darmstadt.

Until now, DMU and the associated software tools have only taken product geometry into account. "However, a growing number of the mechatronic components being used today are still not fully represented in virtual test models, although this is precisely what manufacturers urgently need. Discussions with industry partners have shown that these functionalities are what companies want most," Stork points out in explaining the project's background.

"With the help of various software packages, Functional DMU can simulate a mechatronic product's software-related components as well as its electronic and mechanical components. We import the individual components into a complete model. Once this has been done, we can quickly determine whether the components work well together, or whether there are safety issues such as windows that are too thick and heavy, or an engine that is too weak," the specialist says. Close cooperation between mechanics, electronics and software development is particularly important. In addition to the work of IGD researchers, experts from the Design Automation Division at the Fraunhofer Institute for Integrated Circuits IIS, the Fraunhofer Institute for Open Communication Systems FOKUS and the Fraunhofer Institute for Structural Durability and System Reliability LBF have also contributed to the project.

Together, they have developed a Functional DMU framework that can integrate the mechatronic properties of individual components into the simulation, and can also evaluate them. The framework combines a variety of different commercial simulators, such as SimPack, Matlab/Simulink and Dymola. Here, it is particularly important that the behavior of individual components be visualized in real time. There are now demonstrators that show how Functional DMU works. One of these is the virtual power window, which will be on display at the joint Fraunhofer booth at the Hannover Messe (Hall 17, Booth D60). The next project on the scientists' agenda is the simulation of a steering test rig. Here, again, mechanical, electrical and software components work interactively.

Monika Weiner | alfa
Further information:

More articles from Automotive Engineering:

nachricht New algorithm for optimized stability of planar-rod objects
11.08.2016 | Institute of Science and Technology Austria

nachricht Automated driving: Steering without limits
05.02.2016 | FZI Forschungszentrum Informatik am Karlsruher Institut für Technologie

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Novel mechanisms of action discovered for the skin cancer medication Imiquimod

21.10.2016 | Life Sciences

Second research flight into zero gravity

21.10.2016 | Life Sciences

How Does Friendly Fire Happen in the Pancreas?

21.10.2016 | Life Sciences

More VideoLinks >>>