Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New algorithm for optimized stability of planar-rod objects

11.08.2016

First-time mathematical formulation by IST Austria computer science professor Bernd Bickel solves problem of technical modelling

During the annual top conference of the Special Interest Group for Computer Graphics (SIGGRAPH) of the Association for Computing Machinery (ACM), which took place in Anaheim, USA, IST Austria Professor Bernd Bickel and his group present an algorithm that allows improved technical modelling of planar-rod structures consisting of interlocking wires.


Algorithm corrects connection points of objects fabricated by wire bending machine to optimize stability. Adaptions of design and structure computed. Potential range of application in Rapid Prototyping.

Credit: IST Austria

After designing an aesthetically pleasing structure, e.g. a car or a duck, the contours of the objects are re-calculated with the new algorithm.

In this way, necessary adaptions of the structure and its connection points are computed to guarantee optimal stability of the object fabricated by the wire bending machine. The 2D structures are assembled to a 3D object without requiring additional connectors or soldering points.

"We were able to find a mathematical formulation for an exciting problem which allowed us to solve this problem in a second step. The software can be a useful tool for designers and engineers", says Bernd Bickel concerning the recently developed algorithm.

The software implies applications to art on the one hand, but wire sculptures on the other hand present an extremely efficient and fast alternative for low-fidelity rapid prototyping due to the manufacturing time and required material scaling up linearly with the physical size of objects. The software allows a verification of function and stability resulting in the production of the optimal object only.

###

Bernd Bickel joined IST Austria as an Assistant Professor in 2015. Beforehand he obtained his Master's degree in Computer Science from ETH Zurich in 2006. For his PhD studies, he joined the group of Markus Gross, a full professor of Computer Science at ETH Zurich and the director of Disney Research Zurich. From 2010 to 2012 Bickel was visiting professor at TU Berlin and then became a research scientist and research group leader at Disney Research Zurich, where he investigated approaches for simulating, designing, and fabricating materials and objects. 2015 he received the Microsoft Visual Computing Award.

His research interest focuses on computer graphics and its overlap with animation, biomechanics, material science, and digital fabrication. His main objective is to push the boundaries of how digital content can be efficiently created, simulated, and reproduced using advanced 3D printing technology.

Together with other IST Austria Professors he launched the Visual Computing @ IST Austria platform to make this strong research focus at IST Austria more visible. Recent publications, description of current projects, and videos can be easily accessed. If interested, please visit http://visualcomputing.ist.ac.at

Reference: Computational Design of Stable Planar-Rod Structures, Miguel, Lepoutre, Bickel. ACM Transactions on Graphics 35(4) (SIGGRAPH 2016)

Link to supplementary information and video: http://visualcomputing.ist.ac.at/publications/2016/CDoSPRS/

Media Contact

Stefan Bernhardt
stefan.bernhardt@ist.ac.at
43-224-390-001-092

 @Istaustria

http://Www.ist.ac.at 

Stefan Bernhardt | EurekAlert!

More articles from Automotive Engineering:

nachricht Improved Performance thanks to Reduced Weight
24.07.2017 | Technische Universität Chemnitz

nachricht New Headlamp Dimension: Fully Adaptive Light Distribution in Real Time
29.06.2017 | Universität Stuttgart

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>