Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New algorithm for optimized stability of planar-rod objects

11.08.2016

First-time mathematical formulation by IST Austria computer science professor Bernd Bickel solves problem of technical modelling

During the annual top conference of the Special Interest Group for Computer Graphics (SIGGRAPH) of the Association for Computing Machinery (ACM), which took place in Anaheim, USA, IST Austria Professor Bernd Bickel and his group present an algorithm that allows improved technical modelling of planar-rod structures consisting of interlocking wires.


Algorithm corrects connection points of objects fabricated by wire bending machine to optimize stability. Adaptions of design and structure computed. Potential range of application in Rapid Prototyping.

Credit: IST Austria

After designing an aesthetically pleasing structure, e.g. a car or a duck, the contours of the objects are re-calculated with the new algorithm.

In this way, necessary adaptions of the structure and its connection points are computed to guarantee optimal stability of the object fabricated by the wire bending machine. The 2D structures are assembled to a 3D object without requiring additional connectors or soldering points.

"We were able to find a mathematical formulation for an exciting problem which allowed us to solve this problem in a second step. The software can be a useful tool for designers and engineers", says Bernd Bickel concerning the recently developed algorithm.

The software implies applications to art on the one hand, but wire sculptures on the other hand present an extremely efficient and fast alternative for low-fidelity rapid prototyping due to the manufacturing time and required material scaling up linearly with the physical size of objects. The software allows a verification of function and stability resulting in the production of the optimal object only.

###

Bernd Bickel joined IST Austria as an Assistant Professor in 2015. Beforehand he obtained his Master's degree in Computer Science from ETH Zurich in 2006. For his PhD studies, he joined the group of Markus Gross, a full professor of Computer Science at ETH Zurich and the director of Disney Research Zurich. From 2010 to 2012 Bickel was visiting professor at TU Berlin and then became a research scientist and research group leader at Disney Research Zurich, where he investigated approaches for simulating, designing, and fabricating materials and objects. 2015 he received the Microsoft Visual Computing Award.

His research interest focuses on computer graphics and its overlap with animation, biomechanics, material science, and digital fabrication. His main objective is to push the boundaries of how digital content can be efficiently created, simulated, and reproduced using advanced 3D printing technology.

Together with other IST Austria Professors he launched the Visual Computing @ IST Austria platform to make this strong research focus at IST Austria more visible. Recent publications, description of current projects, and videos can be easily accessed. If interested, please visit http://visualcomputing.ist.ac.at

Reference: Computational Design of Stable Planar-Rod Structures, Miguel, Lepoutre, Bickel. ACM Transactions on Graphics 35(4) (SIGGRAPH 2016)

Link to supplementary information and video: http://visualcomputing.ist.ac.at/publications/2016/CDoSPRS/

Media Contact

Stefan Bernhardt
stefan.bernhardt@ist.ac.at
43-224-390-001-092

 @Istaustria

http://Www.ist.ac.at 

Stefan Bernhardt | EurekAlert!

More articles from Automotive Engineering:

nachricht Did you know how many parts of your car require infrared heat?
23.10.2017 | Heraeus Noblelight GmbH

nachricht Two intelligent vehicles are better than one
04.10.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>