Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cost-efficiency of plug-in hybrids calculated a thousand times faster

22.04.2015

Plug-in hybrids have low fuel consumption, but require more costly parts than cars with a regular combustion engine. During development, the optimal cost balance must be calculated, which has been extremely time consuming to date. Now researchers at Chalmers University of Technology have developed a new method that dramatically reduces the time needed for these calculations.

Plug-in hybrids are more fuel efficient thanks to the combination of electric motor and battery. However, the higher number of components the higher the manufacturing costs.


The new method can be used to calculate the cost-efficiency of plug-in hybrids such as Volvo XC60 Plug-in Hybrid Concept.

Credit: Volvo Car Group

The fuel savings must be calculated based on very long driving cycles, as variations in the way the car is driven and charged on different days plays a major role in fuel consumption. Analysing the fuel efficiency of different plug-in hybrids over long cycles is extremely time-consuming. A whole month of driving has to be analysed second by second, and millions of variables calculated.

Now a research team at Chalmers University of Technology has developed a quick and simple method for engineers to calculate the lowest cost, factoring in both manufacture and driving behaviour. Researcher Mitra Pourabdollah describes the method in her doctoral thesis:

"The operating cost of a plug-in hybrid depends on many different variables, such as the way you drive, how you charge the battery and how far you drive between charges," she says. "Driving habits also affect what size battery you need. Component prices, different battery types and different driving habits combined result in a huge number of parameters that impact the overall cost."

The new solution that Mitra Pourabdollah presents involves using a so-called convex optimisation algorithm. The algorithm acts as a tool in which researchers enter the various parameters that can affect the cost of a plug-in hybrid, and see the results very quickly. The new method speeds up this part of the design process twentyfold. In extreme cases, calculations that would normally take a thousand hours can be completed in half an hour - almost two thousand times faster than previously.

"Dramatic time savings at this stage will allow more opportunities to consider other aspects of the design of the drivetrain and gain a broader perspective," Mitra Pourabdollah claims.

"Rapid feedback is essential for creative work," says Anders Grauers, one of the supervisors of the project. "Even discounting such extreme cases, the new method means that you can get the results of your calculations the same working day, a very significant benefit for the creative process."

Mitra Pourabdollah's research colleagues Nikolce Murgovski and Lars Johannesson Mårdh originally came up with the idea of applying convex optimisation to a complex vehicle model. They began by developing a method for plug-in hybrid buses. Following on from their work, Mitra Pourabdollah studied how the method could be applied to passenger cars. The basic algorithm is very flexible - and fun to work with.

"Finding a way to describe the various components that fit convex optimisation is a bit like a game," explains Mitra Pourabdollah. "The method has many other application areas as well, for example in active safety".

Media Contact

Mitra Pourabdollah
mitrapo@gmail.com
46-704-041-233

 @chalmersnyheter

http://www.chalmers.se/en/ 

Mitra Pourabdollah | EurekAlert!

More articles from Automotive Engineering:

nachricht Improvement of the operating range and increasing of the reliability of integrated circuits
09.11.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

nachricht New algorithm for optimized stability of planar-rod objects
11.08.2016 | Institute of Science and Technology Austria

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

A new dead zone in the Indian Ocean could impact future marine nutrient balance

06.12.2016 | Earth Sciences

Significantly more productivity in USP lasers

06.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>