Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cost-efficiency of plug-in hybrids calculated a thousand times faster


Plug-in hybrids have low fuel consumption, but require more costly parts than cars with a regular combustion engine. During development, the optimal cost balance must be calculated, which has been extremely time consuming to date. Now researchers at Chalmers University of Technology have developed a new method that dramatically reduces the time needed for these calculations.

Plug-in hybrids are more fuel efficient thanks to the combination of electric motor and battery. However, the higher number of components the higher the manufacturing costs.

The new method can be used to calculate the cost-efficiency of plug-in hybrids such as Volvo XC60 Plug-in Hybrid Concept.

Credit: Volvo Car Group

The fuel savings must be calculated based on very long driving cycles, as variations in the way the car is driven and charged on different days plays a major role in fuel consumption. Analysing the fuel efficiency of different plug-in hybrids over long cycles is extremely time-consuming. A whole month of driving has to be analysed second by second, and millions of variables calculated.

Now a research team at Chalmers University of Technology has developed a quick and simple method for engineers to calculate the lowest cost, factoring in both manufacture and driving behaviour. Researcher Mitra Pourabdollah describes the method in her doctoral thesis:

"The operating cost of a plug-in hybrid depends on many different variables, such as the way you drive, how you charge the battery and how far you drive between charges," she says. "Driving habits also affect what size battery you need. Component prices, different battery types and different driving habits combined result in a huge number of parameters that impact the overall cost."

The new solution that Mitra Pourabdollah presents involves using a so-called convex optimisation algorithm. The algorithm acts as a tool in which researchers enter the various parameters that can affect the cost of a plug-in hybrid, and see the results very quickly. The new method speeds up this part of the design process twentyfold. In extreme cases, calculations that would normally take a thousand hours can be completed in half an hour - almost two thousand times faster than previously.

"Dramatic time savings at this stage will allow more opportunities to consider other aspects of the design of the drivetrain and gain a broader perspective," Mitra Pourabdollah claims.

"Rapid feedback is essential for creative work," says Anders Grauers, one of the supervisors of the project. "Even discounting such extreme cases, the new method means that you can get the results of your calculations the same working day, a very significant benefit for the creative process."

Mitra Pourabdollah's research colleagues Nikolce Murgovski and Lars Johannesson Mårdh originally came up with the idea of applying convex optimisation to a complex vehicle model. They began by developing a method for plug-in hybrid buses. Following on from their work, Mitra Pourabdollah studied how the method could be applied to passenger cars. The basic algorithm is very flexible - and fun to work with.

"Finding a way to describe the various components that fit convex optimisation is a bit like a game," explains Mitra Pourabdollah. "The method has many other application areas as well, for example in active safety".

Media Contact

Mitra Pourabdollah


Mitra Pourabdollah | EurekAlert!

More articles from Automotive Engineering:

nachricht New algorithm for optimized stability of planar-rod objects
11.08.2016 | Institute of Science and Technology Austria

nachricht Automated driving: Steering without limits
05.02.2016 | FZI Forschungszentrum Informatik am Karlsruher Institut für Technologie

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>