Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ACOSAR: standardizing merged numerical simulation and real tests

06.10.2015

The ACOSAR EU project kicks off in Graz in late September. The project consortium consists of leading European vehicle manufacturers, suppliers and research establishments, which are jointly working on the standardization necessary for modular, distributed and open system development. The goal of the project is to develop a system interface that allows real-time systems to be linked together also over relatively large distances and to be merged into functional prototypes consisting of virtual and real components. The project is managed by the VIRTUAL VEHICLE Research Center in Graz. The anticipated results are a more economical development process and opportunities for new business models.

Increasingly stringent statutory provisions such as Euro VI or zero-emission zones, larger urban populations, the booming Asian automobile market and constantly rising demand for individual solutions confront European vehicle manufacturers with a major challenge. Customers want an extremely diverse variety of vehicle options, which makes a time- and cost-efficient development process essential for the industry.


Modular, open system architectures provide crucial support for the development of future interdisciplinary systems, from virtual design to integrated tests with real components on test stands

Photo: VIRTUAL VEHICLE

Real-time co-simulation

Early predictions and correspondingly early design decisions are key success factors in modern development processes. With the aid of co-simulation, diverse simulation models can be linked together to enable overall system analysis at a very early stage of development (front loading).

... more about:
»ACI »AVL »early stage »numerical simulation

In vehicle development, the term “co-simulation” means an approach in which the complexity of the overall mechatronic product (the vehicle) and its surroundings is virtually modelled in a development environment. This involves linking together several domain- or department-specific components to form an interactive simulation model.

A logical extension of co-simulation, which is an offline process without real-time capability, is the integration of real-time systems. One or more components available as real hardware on suitable automated test stands (the engine, for example) are integrated directly into the existing system model. As part of the ACoRTA project, for example, the VIRTUAL VEHICLE Research Center in Graz and project partners AVL List, Porsche and TU Graz developed a new method that enables this form of hardware/software simulation in real time.

ACOSAR: a worldwide standard for real-time co-simulation

Due to the extension of co-simulation into the real-time domain, it is possible to apply the co-simulation approach throughout the entire product development process. In order to guarantee a widespread use, a worldwide industry standard is needed. This is where a new EU project called ACOSAR (Advanced Co-simulation Open System Architecture) comes into play.

There is already a widely used standard for the pure virtual world: the Functional Mock-up Interface (FMI). It allows any desired simulation models to be coupled into a simulation environment. A suitable standard for real-time systems that also addresses network communications is not yet available, but essential - because real-time simulations are indispensable when real components are used in an otherwise virtual environment. .

“With the definition of FMI as the standard for model exchange and co-simulation, sharing of simulation models across tool boundaries has become much easier. Users benefit from more efficient processes and entirely new simulation methods. Tool producers benefit from lower development and test effort because they only have to support one tool-to-tool interface, which is supported by numerous programs. FMI is a direct response to the requirements of the collaborative development process in the virtual engineering domain and has been adopted much faster than we expected. We anticipate similar results from the standardization efforts for real-time systems and test systems within ACOSAR”, says Torsten Blochwitz, R&D Manager at ITI and FMI Project Manager in the Modelica Association.

A new solution for all phases of distributed vehicle development

Today the development of new vehicles is distributed over many partners at many locations in many countries. This includes not only the development process with real components and systems, but also preliminary development with models and simulation.

Combining all these topologically scattered development tasks in all development phases at a single location is not feasible due to the high time and resource costs, so an interoperable solution is necessary. ACOSAR will provide it.

The project is tasked with developing an interface called Advanced Co-simulation Interface (ACI) that allows real-time systems (including systems from different producers) to be linked over topological distances to form a virtual, simulated overall system. A particular aim of the standardization activities is to significantly reduce the configuration effort necessary for this and thereby boost the efficiency of tests and simulations.

ACI enables automobile manufacturers and their suppliers to jointly develop complex systems efficiently and test them at an early stage (front loading). An example of these systems is the innovations in automated driving, where the individual components (cameras, sensors, logics and control systems) come from different manufacturers. In the case of environment detection for automated driving functions, for example, ACI would make it easy to integrate real sensors from different manufacturers into subsystems for system layout, so that the actual effects of the sensors could be taken into account very early in the design.

ACOSAR also opens up new application areas and thus revenue prospects for manufacturers of simulation tools and real-time simulation systems, since their systems can be used in combination with other components for increasingly complex tasks.

Comprehensive expertise from a broad partner landscape

ACOSAR is coordinated by VIRTUAL VEHICLE. A total of fifteen partners in three countries are collaborating on this project, including three major vehicle manufacturers (Volkswagen, Porsche and Renault), numerous leading suppliers (AVL, Bosch, dSPACE, ETAS and Siemens) and renowned research institutes.

Representatives from relevant standardization committees (FMI and ASAM) are also involved to enable the joint development of solutions and extensions for existing standards. To bridge the gap between the automobile sector and other sectors, leading representatives from the aviation sector and the rail transport sector (among others) also support the project as associated members of ACOSAR.

Clear benefits from ACOSAR

The ACI developed by ACOSAR will enable early tests and improved decision processes despite large topological distances between development partners. Automobile manufacturers as well as suppliers thus benefit from significant time, resource and cost savings.

There are also clear benefits for small and medium-size enterprises in particular. The planned standardization will give them access to sectors and business areas otherwise reserved for large companies.

Last but not least, ACI standardization creates an opportunity for the development of entirely new business models. Innovative forms of cooperation, such as test bench sharing or cloud simulation, can soon be implemented very easily and across company boundaries.

The project in a nutshell

The ACOSAR project has a total budget of EUR 7.9 million and is coordinated by the VIRTUAL VEHICLE Research Center in Graz. It combines the expertise of fifteen partners in three countries, including three major European vehicle manufacturers (Volkswagen, Porsche and Renault), numerous leading suppliers and service providers (AVL, Bosch, ETAS, ITI, Siemens and TWT) and renowned research institutes. During the three-year project period (starting September 1, 2015) the consortium can also be expanded with additional project partners.

The goal of the ACOSAR project is to define a specification for the methodical and seamless integration of virtual and real components. The industrial partners acting as end-users within the project will validate the outcome of the project with appropriate and relevant use cases.

Project management: VIRTUAL VEHICLE Research Center (Austria)
15 partners: Volkswagen (Germany), Porsche (Germany), Renault SAS (France), Robert Bosch (Germany), AVL List (Austria), dSPACE (Germany), ETAS (Germany), ITI (Germany), Siemens Industry Software (France), TWT (Germany), Spath Micro Electronic Design (Austria), Ilmenau University of Technology (Germany), Leibniz University Hannover (Germany), RWTH Aachen (Germany), VIRTUAL VEHICLE Research Center (Austria)
3 countries: Austria, France, Germany

About VIRTUAL VEHICLE

The research centre in Graz (Austria) is internationally recognized and works on methods and concepts for future vehicles, based on the long-term COMET K2 research program. In recent years the research center has also focused more strongly on funded projects at the national and European level and acting as coordinator for intersectoral EU projects.

Some 200 experts provide sound and extensive expertise in the areas of virtual development, hardware/software co-simulation and functional prototype testing, and validation of new concepts and methods. In cooperation with TU Graz, the centre offers a comprehensive testing and test stand infrastructure concentrated at a single location.

VIRTUAL VEHICLE forms an effective bridge between university research and industrial development. Close cooperation with renowned universities (in particular TU Graz as the main scientific partner) and leading industrial firms creates a new form of cooperation. The highly placed international network of VIRTUAL VEHICLE now includes more than 150 industry partners and 30 university research institutes worldwide.

Contact:

Dr. Martin Benedikt
VIRTUAL VEHICLE Research Center
ACOSAR Project Coordinator
martin.benedikt@v2c2.at
Phone: +43 (0)316 873 9048

Weitere Informationen:

http://www.acosar.eu - Project website
http://www.v2c2.at - Website VIRTUAL VEHIC

Elisabeth List | idw - Informationsdienst Wissenschaft

Further reports about: ACI AVL early stage numerical simulation

More articles from Automotive Engineering:

nachricht Did you know how many parts of your car require infrared heat?
23.10.2017 | Heraeus Noblelight GmbH

nachricht Two intelligent vehicles are better than one
04.10.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>