Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Cincinnati, industry partners develop low-cost, 'tunable' window tintings

11.06.2015

Technology developed by the University of Cincinnati and industry partners can do something that neither blinds nor existing smart windows can do. This patent-pending research, supported by the National Science Foundation, will lead to low-cost window tinting which dynamically adapts for brightness, color temperatures and opacity (to provide for privacy while allowing light in).

A partnership between the University of Cincinnati, Hewlett Packard, and EMD/Merck Research Labs has resulted in a patent-pending breakthrough in 'tunable' window tintings. The breakthrough means traditional window shades could soon be replaced by a low-cost tinting where the brightness, color temperature (warm or cool just like incandescent light bulbs) and opacity (privacy) are adjustable by the user.


Window tinting can turn milky for privacy while still allowing 90 percent or more of sunlight to enter.

Courtesy of Tim Zarki, University of Cincinnati

Details on this research, partly funded by the National Science Foundation, are today's cover story in the June issue of the prestigious trade journal, Applied Optics.

The research was led by Sayantika Mukherjee, doctoral student in UC's Novel Devices Laboratory, part of the university's College of Engineering and Applied Science, and by W.L. Hsieh, visiting doctoral student from the Institute of Applied Mechanics, National Taiwan University; N. Smith, scientist at Merck Chemicals, Ltd.; M. Goulding, scientist at Merck Chemicals, Ltd.; and Jason Heikenfeld, UC professor of electrical engineering and computing systems.

Importantly, the newly developed device structure that makes these 'smart windows' possible is very simple to manufacture, allowing affordability for both business and home use. It can be integrated into new windows or even easily applied to already existing windows, by means of a roll-on coating consisting of a honeycomb of electrodes.

Benefits of the new smart windows

Currently, most home and commercial windows use mechanical shades to provide privacy and to block light, heat or cold. This centuries-old technology is already inexpensive and effective, which has slowed the adoption of electronically controlled window tinting, which previously could only mimic the clear-to-opaque performance of mechanical shades. However, this new breakthrough at the University of Cincinnati is about to change that.

States UC's Jason Heikenfeld, 'Simple electronic window switching is not enough. You need to provide consumers with something you can't do mechanically, and for which there is already a large demand. For example, there is already proven demand for control of color temperature in the lightbulb market, and after all, windows are a source of lighting. Maybe even more compelling, go home to your neighborhood and look at the drawn blinds for privacy but which also block sunlight. What if you could have your privacy and also let the light in at any brightness you want?'

In other words, shade and privacy can be simultaneously, electronically controlled for the first time. Windows could go milky for privacy so no one can see in, but still allow 90 percent (or more) of the available light in. Or, a setting change could dim the entering light or change the color of the light along a spectrum from cooler blue to warmer yellow. 'Blinds can't do that,' said UC's Mukherjee.

So, in summary, the new UC-developed Smart Window device structure provides options for doing any one of the following:

  • Be adjusted simultaneously for brightness and color temperature much like consumers can today buy lightbulbs that provide a warm or a cool light. This will affect the quality of the light entering a home or building
  • Allow you to have your privacy while letting 90 percent or more of the light in or dim the entering light to a lower volume, or revert back to a fully clear window. No more need to block natural light entering the house just for the sake of a little privacy
  • Provide multidimensional control of a greater range of color and opacity selections. Beyond the above two examples, simultaneous control between any other types of two window states are possible. For example, a window could also independently control both visible light and infrared heat transmission. So, you could block infrared heat from the sun in the summer but let it into the house in the winter
  • Importantly, all of this is inexpensive to manufacture and can be applied to windows during standard manufacturing. The new device structure can also be applied to windows currently in use, via a cut-to-size film of electrodes applied to windows already in place in homes and other buildings

The technology behind the breakthrough

Heikenfeld and UC's Novel Devices Laboratory are international leaders in developments related to adaptive optics, e-paper and the use of color in displays on electronic devices. For years, they have made breakthroughs related to the brightness, color saturation and speed of such displays.

The challenge for the UC, Merck and HP team consisted of applying this technology, common in e-paper electronic displays on our mobile and computer devices, to a larger surface like windows and to do so in a way that could be manufactured inexpensively, for less than the $30 per square foot, which is the industry standard for window manufacturing. It's a challenge the team has worked on for the past three years thanks to in-kind support from all three partners and to a $357,526 grant from the National Science Foundation's Grant Opportunities for Academic Liaison with Industry program.

Explains Mukherjee, 'Basically, one color has one charge. Another color has another charge, and we apply voltage to repel or attract the colors into different positions. The basic technology is not that different from what our group has previously demonstrated before in electronic display devices. The greater challenge was to find an appropriate device structure in order to apply the technology to the larger surface area of a window in a way that was inexpensive and fairly easy. The greater impact for us was to realize the potential of a few selective but compelling operating modes such as changing color temperature or privacy/shade.'

Media Contact

M.B. Reilly
reillymb@ucmail.uc.edu
513-556-1824

 @UofCincy

http://www.uc.edu/news 

M.B. Reilly | EurekAlert!

Further reports about: electrodes electronic window inexpensive smart windows structure temperature

More articles from Architecture and Construction:

nachricht Concrete from wood
05.07.2017 | Schweizerischer Nationalfonds SNF

nachricht Modular storage tank for tight spaces
16.03.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>