Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Cincinnati, industry partners develop low-cost, 'tunable' window tintings

11.06.2015

Technology developed by the University of Cincinnati and industry partners can do something that neither blinds nor existing smart windows can do. This patent-pending research, supported by the National Science Foundation, will lead to low-cost window tinting which dynamically adapts for brightness, color temperatures and opacity (to provide for privacy while allowing light in).

A partnership between the University of Cincinnati, Hewlett Packard, and EMD/Merck Research Labs has resulted in a patent-pending breakthrough in 'tunable' window tintings. The breakthrough means traditional window shades could soon be replaced by a low-cost tinting where the brightness, color temperature (warm or cool just like incandescent light bulbs) and opacity (privacy) are adjustable by the user.


Window tinting can turn milky for privacy while still allowing 90 percent or more of sunlight to enter.

Courtesy of Tim Zarki, University of Cincinnati

Details on this research, partly funded by the National Science Foundation, are today's cover story in the June issue of the prestigious trade journal, Applied Optics.

The research was led by Sayantika Mukherjee, doctoral student in UC's Novel Devices Laboratory, part of the university's College of Engineering and Applied Science, and by W.L. Hsieh, visiting doctoral student from the Institute of Applied Mechanics, National Taiwan University; N. Smith, scientist at Merck Chemicals, Ltd.; M. Goulding, scientist at Merck Chemicals, Ltd.; and Jason Heikenfeld, UC professor of electrical engineering and computing systems.

Importantly, the newly developed device structure that makes these 'smart windows' possible is very simple to manufacture, allowing affordability for both business and home use. It can be integrated into new windows or even easily applied to already existing windows, by means of a roll-on coating consisting of a honeycomb of electrodes.

Benefits of the new smart windows

Currently, most home and commercial windows use mechanical shades to provide privacy and to block light, heat or cold. This centuries-old technology is already inexpensive and effective, which has slowed the adoption of electronically controlled window tinting, which previously could only mimic the clear-to-opaque performance of mechanical shades. However, this new breakthrough at the University of Cincinnati is about to change that.

States UC's Jason Heikenfeld, 'Simple electronic window switching is not enough. You need to provide consumers with something you can't do mechanically, and for which there is already a large demand. For example, there is already proven demand for control of color temperature in the lightbulb market, and after all, windows are a source of lighting. Maybe even more compelling, go home to your neighborhood and look at the drawn blinds for privacy but which also block sunlight. What if you could have your privacy and also let the light in at any brightness you want?'

In other words, shade and privacy can be simultaneously, electronically controlled for the first time. Windows could go milky for privacy so no one can see in, but still allow 90 percent (or more) of the available light in. Or, a setting change could dim the entering light or change the color of the light along a spectrum from cooler blue to warmer yellow. 'Blinds can't do that,' said UC's Mukherjee.

So, in summary, the new UC-developed Smart Window device structure provides options for doing any one of the following:

  • Be adjusted simultaneously for brightness and color temperature much like consumers can today buy lightbulbs that provide a warm or a cool light. This will affect the quality of the light entering a home or building
  • Allow you to have your privacy while letting 90 percent or more of the light in or dim the entering light to a lower volume, or revert back to a fully clear window. No more need to block natural light entering the house just for the sake of a little privacy
  • Provide multidimensional control of a greater range of color and opacity selections. Beyond the above two examples, simultaneous control between any other types of two window states are possible. For example, a window could also independently control both visible light and infrared heat transmission. So, you could block infrared heat from the sun in the summer but let it into the house in the winter
  • Importantly, all of this is inexpensive to manufacture and can be applied to windows during standard manufacturing. The new device structure can also be applied to windows currently in use, via a cut-to-size film of electrodes applied to windows already in place in homes and other buildings

The technology behind the breakthrough

Heikenfeld and UC's Novel Devices Laboratory are international leaders in developments related to adaptive optics, e-paper and the use of color in displays on electronic devices. For years, they have made breakthroughs related to the brightness, color saturation and speed of such displays.

The challenge for the UC, Merck and HP team consisted of applying this technology, common in e-paper electronic displays on our mobile and computer devices, to a larger surface like windows and to do so in a way that could be manufactured inexpensively, for less than the $30 per square foot, which is the industry standard for window manufacturing. It's a challenge the team has worked on for the past three years thanks to in-kind support from all three partners and to a $357,526 grant from the National Science Foundation's Grant Opportunities for Academic Liaison with Industry program.

Explains Mukherjee, 'Basically, one color has one charge. Another color has another charge, and we apply voltage to repel or attract the colors into different positions. The basic technology is not that different from what our group has previously demonstrated before in electronic display devices. The greater challenge was to find an appropriate device structure in order to apply the technology to the larger surface area of a window in a way that was inexpensive and fairly easy. The greater impact for us was to realize the potential of a few selective but compelling operating modes such as changing color temperature or privacy/shade.'

Media Contact

M.B. Reilly
reillymb@ucmail.uc.edu
513-556-1824

 @UofCincy

http://www.uc.edu/news 

M.B. Reilly | EurekAlert!

Further reports about: electrodes electronic window inexpensive smart windows structure temperature

More articles from Architecture and Construction:

nachricht Smart homes will “LISTEN” to your voice
17.01.2017 | EML European Media Laboratory GmbH

nachricht Designing Architecture with Solar Building Envelopes
16.01.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>