Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Growth and Decline of Cities in Germany: Novel Visualisations of Urban Change

29.10.2015

Innovative maps that illustrate the most recent socio-demographic urban changes in the major city urban agglomerations in Germany have very recently been produced in a joint project of the School of Geography and the Environment at the University of Oxford and the Research Institute for Regional and Urban Development Dortmund (Germany).

The Research Institute for Regional and Urban Development (Institut für Landes- und Stadtentwicklungsforschung, ILS) investigates new social processes, especially those involving urbanisation in Germany and Europe.


Cartograms of population changes in urban agglomerations in Germany (2008-2013)

Benjamin Hennig, Stefan Kaup / © 2015 School of Geography and the Environment, University of Oxford and ILS - Research Institute for Regional and Urban Development, Dortmund, Germany

This includes economic, social and structural processes that are compared and monitored over time to gain a better understanding of the underlying developments. Testing state-of-the-art visualisation techniques are a significant part of this effort.

This was the focus of a collaboration between researchers of the University of Oxford and the ILS Dortmund which resulted in the development of a series of highly effective maps called “cartograms” that provide new insights in the changing geographies of city regions in Germany.

The method used in the research creates gridded cartograms in which equally-sized grid cells are resized according to number of people in any area. The resulting map looks as if the reader has placed a magnifying glass on the most densely populated regions while sparsely populated areas are much smaller than they appear on a land area map.

This allows additional spatial information such as socio-demographic data to be shown in their relation to population. Using such visualisations dynamic changes, such as shifting populations, can be analysed in their spatial as well as their human context.

Approximately half the population of Germany lives in the 30 major urban German agglomerations, such as Berlin, Hamburg, Munich (München), and Cologne (Köln) but also in smaller cities including Münster, Freiburg, Leipzig, and Dresden. The gridded cartogram helps to understand the demographic processes and development that occurred there in recent years, revealing some distinct trends of re-urbanisation in some of the most densely populated areas.

Examination of the average annual change in the populations of the selected urban agglomerations highlights the regional differences in these trends. Contrary to the national population decline, which is predicted to continue, 26 out of the 30 major agglomerations show population growth between 2008 and 2013. In 25 of these areas population growth in the city centre is even higher than in its suburban area. This can be seen as evidence of a very recent trend of re-urbanisation in these places.

One particularly notable trend is the dynamics in smaller cities such as Freiburg and Münster, as well as Dresden and Leipzig in east Germany. In addition to high rates of re-urbanisation, the suburban areas often have stagnating or even declining populations.

The Ruhr area agglomerations are distinctively different from the other areas described in the overall summary of trends. The stagnating populations in the centres of Dortmund and Essen are complemented by considerably declining populations in their surrounding areas.

Two cartograms depicting growth and decline have been produced as separate maps. These reveal, population decline in the settlements in the Ruhr area that is larger than in all other urban agglomerations put together. Growth, in contrast, is spatially spread much more evenly.

Amongst the influencing factors or growth and decline are developments in social structures, employment as well as changes in land development in these regions. How these factors are interconnected and influence each other is part of further research within this project that aims at establishing a long-term geomonitoring of these regions in order to better understand these new forms of urbanisation in Germany that are currently only just beginning to emerge.

Supplementary material including high resolution graphics of the maps is available as a download via the following link: http://wrld.at/prils

For more information please contact:

Dr. Benjamin Hennig
School of Geography and the Environment der University of Oxford
E-Mail: benjamin.hennig@ouce.ox.ac.uk

Stefan Kaup
ILS - Research Institute for Regional and Urban Development, Dortmund, Germany
E-Mail: stefan.kaup@ils-research.de

Weitere Informationen:

http://www.viewsoftheworld.net/?p=4604
http://www.ils-forschung.de/index.php?lang=en&s=geoinformation_und_monitorin...
http://www.worldmapper.limited
http://www.geog.ox.ac.uk/staff/bhennig.html

Dr. Tanja Ernst | idw - Informationsdienst Wissenschaft

More articles from Architecture and Construction:

nachricht Concrete from wood
05.07.2017 | Schweizerischer Nationalfonds SNF

nachricht Modular storage tank for tight spaces
16.03.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>