Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simulating future noise in order to prevent it

23.02.2016

Noise is disturbing and can be harmful to health. Empa researchers have now succeeded in simulating road noise by means of «auralisation». The aim is to make noise audible along traffic routes that are merely in the planning stage – and thus include countermeasures at the same time.

Auralisation is understood as making audible those sound events that will only occur in the future. Until a few years ago, it was mainly used by interior designers for optimising room acoustics.


Using this experimental set-up, the Empa scientists recorded the tyre noises they have taken into account as a source in the auralisation model, alongside the engine-related driving noises.

In Empa's «TAURA» project funded by the Swiss National Science Foundation (SNF) a research team around Reto Pieren is now working on an auralisation model, which simulates the noise of a car accelerating past an observer. This model thus makes it possible to take account of precautions to reduce noise, even in the planning of road construction projects.

Developing such an auralisation model is easier said than done. The noise caused by a car speeding past originates from different sources, which have to be entered into the «emission module» in the computer model. Firstly there is the engine that roars in the ears, particularly at high speeds. Although speed, vehicle type and driving style also influence the engine-related driving noise.

Then the tyres also generate noise as they roll along the road. This is largely dependent on the type of road surface and make of tyre. Pieren and his colleagues would like in future to add further sources of noise into their auralisation model, such as the effect of different road surfaces and wind noises.

Thousands of parameters – that is how complex the noise of vehicles can be

The researchers firstly had to identify the extent of all these influences. To this end, they recorded the driving noise of various makes of vehicle, for instance of a VW Touran, a Ford Focus 1.8i or a Skoda Fabia. These measurements were taken from several microphone positions and at different speeds. The researchers also varied the tyre models, engine load and revolutions per minute.

They then extracted the sound characteristics from these recordings and transcribed these as parameters in their auralisation model. They ended up with a total of several thousand such parameters, which cause a completely different driving noise depending on interaction.

Although even this was not sufficient: next they had to account for propagation phenomena such as the Doppler effect, sound absorption in air and reduction in noise due to the distance between the source of the noise and the observer. An observer will perceive noise differently depending on his or her position in relation to the source of the noise and how each moves relative to the other. We all know the Doppler effect from our daily lives: the siren on an emergency vehicle has a high pitch whenever the vehicle is approaching and a comparably lower pitch when it is driving away again.

How irritating do we perceive noises to be?

The modelled signals finally have to be transformed into sound via headphones or a pair of speakers. Noise first arises in our consciousness, however, so is perceived differently from listener to listener and is not easily registered in physical measurement units. That is why test subjects were asked to listen to the simulated driving noises and make statements about their irksomeness, the level of noise induced impairment. Objective relationships can be established whenever several test subjects have assessed different noises according to their irksomeness, although noise is a subjective factor.

Noise has a different effect on human beings depending on the time of day, health condition and age. Accordingly the consequences for health extend from intermittent sleep deprivation through to an increased risk of cardiovascular disease. Noise reduction measures must therefore be taken into account when planning residential and industrial zones and traffic routes in order to prevent such impairment. This is where town planners, political decision makers and the public need indications of the anticipated noise emissions. Standard measures can be calculated nowadays – but auralisation can help with evaluating new ideas for noise optimisation. This is how Empa researchers contribute to noise reduction using their auralisation model.

Also of interest to the research community

Besides the practical, there is also a scientific benefit. There was no such detailed auralisation model available for simulating road noise before Reto Pieren and his colleagues started their research. In particular the simulation of accelerating vehicles is new. To this extent the research group is involved in pioneering work in the field of auralisation. The scientists plan to conduct initial experiments with sample recordings in their in-house audio laboratory within the next few weeks.

Weitere Informationen:

http://www.empa.ch/web/s604/-/auralisierung-von-beschleunigenden-autos

Cornelia Zogg | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt
Further information:
https://www.empa.ch

Further reports about: Doppler effect Empa Simulating computer model high speeds reduction traffic routes

More articles from Architecture and Construction:

nachricht Smart buildings through innovative membrane roofs and façades
31.08.2017 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Concrete from wood
05.07.2017 | Schweizerischer Nationalfonds SNF

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>