Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New “Cool Roof Time Machine” Will Accelerate Cool Roof Deployment

20.04.2015

Standards body approves Berkeley Lab’s method to mimic natural soiling of roofing materials.

Cool roofs can help keep buildings cool, thus lowering the building’s energy use, while also mitigating the urban heat island effect by reflecting sunlight away from buildings and cities. But as cool roofs age and get soiled, how much of their reflectance do they lose?


Roy Kaltschmidt/Berkeley Lab

Berkeley Lab research associate Sharon Chen sprays roofing material with soiling mixture.

A collaboration led by scientists at Lawrence Berkeley National Laboratory (Berkeley Lab) has established a method to simulate soiling and weathering processes in the lab, reproducing in only a few days the solar reflectance of roofing products naturally aged for three years. Now this protocol has been approved by ASTM International, a widely referenced standards body, as a standard practice for the industry, and published as ASTM D7897-15.

“What we’ve created is essentially a cool roof time machine,” said Ronnen Levinson of Berkeley Lab’s Heat Island Group. “By reducing product rating time to three days from three years, our new ASTM standard practice will speed the introduction of high-performance cool roofs not only in the United States, but around the world.”

Roof reflectance is rated when new, and after three years of outdoor exposure. Because the ASTM standard has been endorsed by the Cool Roof Rating Council (CRRC), it is in turn accepted as part of California’s building code, specifically California's Title 24 Building Energy Efficiency Standards. Research is underway to adapt the method for use in China, India, and Europe.

The laboratory practice involves putting a piece of the roof material in a commercial weathering apparatus, which exposes the material to cycles of heat, moisture, and ultraviolet light, for one day. This “conditions” the material before soiling. Then a soiling apparatus developed at Berkeley Lab sprays a calibrated aqueous soiling mixture of dust, soot, particulate organic matter, and salts for about 10 seconds. After it dries, it goes back in the weathering apparatus for one more day, to simulate the cleaning effects of dew and rain.

This method was applied to 25 different roof products, including single-ply membranes, coatings, tiles, and asphalt shingles, and reproduced—in less than three days—the CRRC’s three-year aged values of solar reflectance.

The researchers devised different soiling mixtures to mimic site-specific features of three environments: a hot and humid climate (Miami, Florida); a hot and dry climate (Phoenix, Arizona); and a polluted atmosphere in a temperate climate (Cleveland, Ohio). A fourth soiling mixture was devised to replicate the aged solar reflectance averaged over all three sites, which is the aged value reported by the CRRC on rated product labels.

A team of Berkeley Lab scientists and research associates, including Mohamad Sleiman, Hugo Destaillats, Sharon Chen, Thomas Kirchstetter, Haley Gilbert, Paul Berdahl, and Levinson, worked with Hashem Akbari at Concordia University, the CRRC, and more than 40 industrial partners to develop the protocol. The process was described in a paper in the journal Solar Energy Materials and Solar Cells last year.

Berkeley Lab and the CRRC will offer one-day courses on this practice on April 21 and 22. Representatives of 10 manufacturers, four independent testing laboratories, and several research institutions in Mexico and South Africa will come to Berkeley Lab to attend these fully subscribed workshops. Additional courses will be offered this summer to train researchers from China and India.

Funding for this research was provided by the Department of Energy, Energy Efficiency and Renewable Energy, Building Technologies Office.

# # #

Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov 

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov

Contact Information
Julie Chao
Science Writer
jhchao@lbl.gov
Phone: 510-486-6491

Julie Chao | newswise

Further reports about: ASTM Building Cool roofs Department Deployment Energy Laboratory Roof asphalt shingles ultraviolet light

More articles from Architecture and Construction:

nachricht Flexible protection for "smart" building and façade components
30.11.2016 | Fraunhofer-Institut für Silicatforschung ISC

nachricht Healthy living without damp and mold
16.11.2016 | Fraunhofer-Gesellschaft

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>