Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New “Cool Roof Time Machine” Will Accelerate Cool Roof Deployment


Standards body approves Berkeley Lab’s method to mimic natural soiling of roofing materials.

Cool roofs can help keep buildings cool, thus lowering the building’s energy use, while also mitigating the urban heat island effect by reflecting sunlight away from buildings and cities. But as cool roofs age and get soiled, how much of their reflectance do they lose?

Roy Kaltschmidt/Berkeley Lab

Berkeley Lab research associate Sharon Chen sprays roofing material with soiling mixture.

A collaboration led by scientists at Lawrence Berkeley National Laboratory (Berkeley Lab) has established a method to simulate soiling and weathering processes in the lab, reproducing in only a few days the solar reflectance of roofing products naturally aged for three years. Now this protocol has been approved by ASTM International, a widely referenced standards body, as a standard practice for the industry, and published as ASTM D7897-15.

“What we’ve created is essentially a cool roof time machine,” said Ronnen Levinson of Berkeley Lab’s Heat Island Group. “By reducing product rating time to three days from three years, our new ASTM standard practice will speed the introduction of high-performance cool roofs not only in the United States, but around the world.”

Roof reflectance is rated when new, and after three years of outdoor exposure. Because the ASTM standard has been endorsed by the Cool Roof Rating Council (CRRC), it is in turn accepted as part of California’s building code, specifically California's Title 24 Building Energy Efficiency Standards. Research is underway to adapt the method for use in China, India, and Europe.

The laboratory practice involves putting a piece of the roof material in a commercial weathering apparatus, which exposes the material to cycles of heat, moisture, and ultraviolet light, for one day. This “conditions” the material before soiling. Then a soiling apparatus developed at Berkeley Lab sprays a calibrated aqueous soiling mixture of dust, soot, particulate organic matter, and salts for about 10 seconds. After it dries, it goes back in the weathering apparatus for one more day, to simulate the cleaning effects of dew and rain.

This method was applied to 25 different roof products, including single-ply membranes, coatings, tiles, and asphalt shingles, and reproduced—in less than three days—the CRRC’s three-year aged values of solar reflectance.

The researchers devised different soiling mixtures to mimic site-specific features of three environments: a hot and humid climate (Miami, Florida); a hot and dry climate (Phoenix, Arizona); and a polluted atmosphere in a temperate climate (Cleveland, Ohio). A fourth soiling mixture was devised to replicate the aged solar reflectance averaged over all three sites, which is the aged value reported by the CRRC on rated product labels.

A team of Berkeley Lab scientists and research associates, including Mohamad Sleiman, Hugo Destaillats, Sharon Chen, Thomas Kirchstetter, Haley Gilbert, Paul Berdahl, and Levinson, worked with Hashem Akbari at Concordia University, the CRRC, and more than 40 industrial partners to develop the protocol. The process was described in a paper in the journal Solar Energy Materials and Solar Cells last year.

Berkeley Lab and the CRRC will offer one-day courses on this practice on April 21 and 22. Representatives of 10 manufacturers, four independent testing laboratories, and several research institutions in Mexico and South Africa will come to Berkeley Lab to attend these fully subscribed workshops. Additional courses will be offered this summer to train researchers from China and India.

Funding for this research was provided by the Department of Energy, Energy Efficiency and Renewable Energy, Building Technologies Office.

# # #

Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit 

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit

Contact Information
Julie Chao
Science Writer
Phone: 510-486-6491

Julie Chao | newswise

Further reports about: ASTM Building Cool roofs Department Deployment Energy Laboratory Roof asphalt shingles ultraviolet light

More articles from Architecture and Construction:

nachricht Rock solid: Carbon-reinforced concrete from Augsburg
11.10.2016 | Universität Augsburg

nachricht Heating and cooling with environmental energy
22.09.2016 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>