Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic liquids improve energy efficiency of buildings

16.01.2018

Materials scientists of the Friedrich Schiller University Jena, Germany, develop smart windows for controlled shading and solar thermal energy harvesting

Climate protection and the reduction of carbon dioxide emissions have been on top of global development agendas. Accordingly, research and development projects have been conducted on national and international levels, which aim for the improvement of the CO2-footprint in diverse processes.


A prototype of the innovative smart windows for controlled shading and solar thermal energy harvesting is presented by PhD student Benjamin Heiz from the research group of Lothar Wondraczek.

Photo: Jan-Peter Kasper/FSU Jena

Apart from particularly energy-intensive sectors of the industry, the building sector in particular is among the biggest CO2-emmitters: from residential homes, manufacturing facilities and storage depots to big commercial buildings, about 40 percent of the energy consumption within the EU are due to the heating, cooling, air conditioning and lighting of buildings.

Considering next-generation smart windows and façade devices, one aspect of this problem is addressed in the research project Large-Area Fluidic Windows (LaWin) which has been coordinated at the Friedrich Schiller University Jena, Germany, since 2015. A new type of such smart windows was now presented in the upcoming issue of ‘Advanced Sustainable Systems‘.

In their paper ‘Large-Area Smart Window with Tunable Shading and Solar-Thermal Harvesting Ability Based on Remote Switching of a Magneto-Active Liquid‘ the Jena materials researchers introduce prototypes of a window that changes its light permeability at the touch of a button, and, at the same time, can be used for solar-thermal energy harvesting (DOI: 10.1002/adsu.201700140). The subject will be featured on the title page of the journal.

Liquids in windows and façades

“Our project‘s key feature is the use of liquids in windows and façades, for example, as heat carriers or to enable additional functions,“ explains Lothar Wondraczek, the project‘s coordinator. “To this end we develop new glass materials, into which large-area channel structures are integrated. These are used for circulating functional fluids.“

In latest prototypes, the liquid is loaded with the nanoscale magnetic iron particles. These can be extracted from the liquid with the help of a magnet. Vice versa, they can be re-suspended by simply switching-off the magnet. “Depending on the number of the iron particles in the liquid, the liquid itself takes on different shades of grey, or it will even turn completely black,“ Wondraczek explains.

“Then, it becomes possible to automatically adjust the incidence of light, or to harvest solar heat which can then be put to further use within the building.” The efficiency in terms of heat gain per area is comparable with that of state-of-the-art solar thermal facilities. But unlike those, the present system can be readily integrated in a vertical façade. Switching between on and off – the release or capture of particles – happens in a separate tank. An electrical connection at the windows is not necessary.

Indoor air conditioning, tunable shading and harvesting of solar heat

“The greatest advantage of large-scale fluidic windows is that they can substitute air conditioning systems, daylight regulation systems and for instance warm water processing,“ stresses Wondraczek, who holds the chair of Glass Chemistry at the University of Jena. Developing cost-effective large-size window glass modules is key.

On the one hand the glass elements need to include the channels, on the other hand they maintain their performance over the whole lifespan of the building. Finally, they have to provide the ability for integration with standard window manufacture technologies in frames of double or triple glazings. With the present prototypes which were manufactured on a scale of around 200 square meters, the research consortium demonstrated that those requirements can be fulfilled.

Over the period of 2015-2017, the project received a grant of 5.9 million Euros from the European Union within the framework of the Horizon-2020-Programme for Industrial Leadership. A further 2.2 million Euro have been added by eleven industry partners who have been members of the consortium. After the end of the first funding period, commercialisation of first applications is planned for this year.

Original Publication:
Heiz, B. P. et al. (2017): A Large-Area Smart Window with Tunable Shading and Solar-Thermal Harvesting Ability Based on Remote Switching of a Magneto-Active Liquid, Advanced Sustainable Systems, DOI: 10.1002/adsu.201700140.

Contact:
Prof. Dr Lothar Wondraczek
Otto Schott Institute of Materials Research
Friedrich Schiller University Jena
Fraunhoferstr. 6, 07743 Jena
Germany
Phone: +49 (0)3641 948500
Email: lothar.wondraczek@uni-jena.de

Weitere Informationen:

http://www.uni-jena.de/en/start.html

Juliane Dölitzsch | idw - Informationsdienst Wissenschaft

More articles from Architecture and Construction:

nachricht New, forward-looking report outlines research path to sustainable cities
24.01.2018 | National Science Foundation

nachricht Insulating bricks with microscopic bubbles
16.01.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

Im Focus: Stronger evidence for a weaker Atlantic overturning

The Atlantic overturning – one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards – is weaker today than any time before in more than 1000 years. Sea surface temperature data analysis provides new evidence that this major ocean circulation has slowed down by roughly 15 percent since the middle of the 20th century, according to a study published in the highly renowned journal Nature by an international team of scientists. Human-made climate change is a prime suspect for these worrying observations.

“We detected a specific pattern of ocean cooling south of Greenland and unusual warming off the US coast – which is highly characteristic for a slowdown of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

New capabilities at NSLS-II set to advance materials science

18.04.2018 | Materials Sciences

Strong carbon fiber artificial muscles can lift 12,600 times their own weight

18.04.2018 | Materials Sciences

Polymer-graphene nanocarpets to electrify smart fabrics

18.04.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>