Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Machine-drawn restoration glasses from SCHOTT authentically manufactured

04.12.2014

TIKANA®, RESTOVER®, and GOETHEGLAS are manufactured using the historically authentic Fourcault process

The international technology group SCHOTT uses the authentic Fourcault process to manufacture its various architectural glasses for the restoration of historic buildings. This process is used to achieve an appearance that closely resembles the period in which the respective buildings were actually built.


When you look through restoration glasses such as RESTOVER® plus from SCHOTT, the even edges behind them look wavy. Photo: SCHOTT


Thanks to the insulating glass TIKANA®, the external appearance of the Van de Velde building at Bauhaus University in Weimar now resembles the aesthetics of the period in which it was used by the State Bauhaus in Weimar. Photo: SCHOTT

The restoration glasses that SCHOTT offers have also received European technical certification and therefore meet the demands of monument conservationists as well as building owners and users. Ulrich Huber, Sales Manager for Architectural Glasses at SCHOTT Advanced Optics, will be giving a presentation on this topic at the event “Denkmal und Energie” to be held in Osnabrück, Germany, on December 8.

“Based on historic technologies, the Fourcault process uses molten glass that is mechanically drawn upwards between several pairs of rollers on different floors of the building and then slowly cools them down. The continuous glass ribbon is finally cut into individual sheets at the top of the drawing shaft,” explains Ulrich Huber, Sales Manager for Architectural Glasses at SCHOTT Advanced Optics, in reference to how the drawing process works.

“The special characteristics of the restoration glasses are achieved by using this historically authentic production process,” Huber adds. The typical impression of a machine-drawn glass is characterized by deviations in terms of its thickness and flatness. Melting-related traits such as bubbles, nodes and stones within certain tolerances also contribute to the characteristic look of machine-drawn glasses. At the same time, all of the characteristics of glass can be influenced during the production process and be made to closely match the appearance of the original historic glass. 

Glasses that are manufactured using the Fourcault process differ from the float glasses that are used today mainly in terms of how they can be looked through and their outer appearance. When you look through machine-drawn restoration glasses, the even edges behind them look wavy. Floated glasses on the other hand leave an undistorted impression. When you look at the surface of a machine-drawn restoration glass, you will see unevenness, while a floated glass looks flat. 

Furthermore, all SCHOTT restoration glasses can be processed into insulating glass, laminated glass or safety glass. When it came to renovating the Van de Velde building at Bauhaus University in Weimar, insulating glass that consisted of an outer pane of TIKANA® glass was used. The external appearance of the building now resembles the aesthetics of the period in which it was used by the State Bauhaus in Weimar. TIKANA® was particularly well suited for this project because its slightly uneven surface fits in harmoniously with the buildings of the classical modern period. Besides its standard thickness of 4 mm, this glass can also be manufactured in 6 mm thickness and in lengths of up to 3,000 mm. 

In addition to TIKANA® glass, the restoration glass RESTOVER® is also manufactured using the Fourcault process. It resembles the window glass manufactured around the turn of the century. Thanks to its relative thinness, it can easily be installed in historic window frames and profiles. With RESTOVER® light, a more lightly structured surface version that resembles mouth-blown glass is now also available. RESTOVER® plus, on the other hand, has a more dominant structure. 

GOETHEGLAS is yet another restoration glass from SCHOTT, a colorless, drawn glass with an irregular surface full of character that was used predominantly in the 18th and 19th century. It is also suited for use as outdoor glazing, for instance to protect precious lead glazings from environmental and weather damages. 

SCHOTT’s complete product line includes not only machine-drawn restoration glasses, but also several high-quality architectural glasses: the decorative clear glass ARTISTA® for indoor and outdoor applications, the highly transparent, colorless flat glass RIVULETTA® with a surface structure that runs parallel on one side, the semi-transparent, anti-reflective glass MIRONA® and the dichroitic NARIMA® effects glass. The product line also includes coated specialty glasses such as anti-reflective AMIRAN® and MIROGARD®. Furthermore, SCHOTT offers the radiation shielding glass RD 50® for use in buildings, X-ray rooms, and operating rooms as a transparent alternative to other shielding materials. 

Other information is available under: http://www.schott.com/architecture/english/products/index.html

AMIRAN®, ARTISTA®, MIROGARD®, MIRONA®, NARIMA®, RESTOVER®, RIVULETTA®, TIKANA® and RD 50® are registered trademarks of SCHOTT AG.

SCHOTT AG

Dr Haike Frank

Public Relations Manager

Phone: +49 (0)6131 - 66 4088

haike.frank@schott.com

www.schott.com

ABOUT SCHOTT

SCHOTT is an international technology group with 130 years of experience in the areas of specialty glasses and materials and advanced technologies. SCHOTT ranks number one in the world with many of its products. Its core markets are the household appliance, pharmaceutical, electronics, optics and transportation industries. The company is strongly committed to contributing to its customers’ success and making SCHOTT an important part of people’s lives with high-quality products and intelligent solutions. SCHOTT is committed to managing its business in a sustainable manner and supporting its employees, society and the environment. The SCHOTT Group maintains close proximity to its customers with manufacturing and sales units in 35 countries. Its workforce of 15,400 employees generated worldwide sales of 1.84 billion euros for the 2012/2013 fiscal year. SCHOTT AG, with its headquarters in Mainz (Germany) is owned by the Carl Zeiss Foundation.

SCHOTT AG - Hattenbergstrasse 10 - 55122 Mainz - Germany Phone: +49 (0)6131/66-2411 - info.pr@schott.com - www.schott.com

Dr. Haike Frank | SCHOTT AG

More articles from Architecture and Construction:

nachricht Construction Impact Guide
18.05.2018 | Hochschule RheinMain

nachricht New, forward-looking report outlines research path to sustainable cities
24.01.2018 | National Science Foundation

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>