Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Machine-drawn restoration glasses from SCHOTT authentically manufactured

04.12.2014

TIKANA®, RESTOVER®, and GOETHEGLAS are manufactured using the historically authentic Fourcault process

The international technology group SCHOTT uses the authentic Fourcault process to manufacture its various architectural glasses for the restoration of historic buildings. This process is used to achieve an appearance that closely resembles the period in which the respective buildings were actually built.


When you look through restoration glasses such as RESTOVER® plus from SCHOTT, the even edges behind them look wavy. Photo: SCHOTT


Thanks to the insulating glass TIKANA®, the external appearance of the Van de Velde building at Bauhaus University in Weimar now resembles the aesthetics of the period in which it was used by the State Bauhaus in Weimar. Photo: SCHOTT

The restoration glasses that SCHOTT offers have also received European technical certification and therefore meet the demands of monument conservationists as well as building owners and users. Ulrich Huber, Sales Manager for Architectural Glasses at SCHOTT Advanced Optics, will be giving a presentation on this topic at the event “Denkmal und Energie” to be held in Osnabrück, Germany, on December 8.

“Based on historic technologies, the Fourcault process uses molten glass that is mechanically drawn upwards between several pairs of rollers on different floors of the building and then slowly cools them down. The continuous glass ribbon is finally cut into individual sheets at the top of the drawing shaft,” explains Ulrich Huber, Sales Manager for Architectural Glasses at SCHOTT Advanced Optics, in reference to how the drawing process works.

“The special characteristics of the restoration glasses are achieved by using this historically authentic production process,” Huber adds. The typical impression of a machine-drawn glass is characterized by deviations in terms of its thickness and flatness. Melting-related traits such as bubbles, nodes and stones within certain tolerances also contribute to the characteristic look of machine-drawn glasses. At the same time, all of the characteristics of glass can be influenced during the production process and be made to closely match the appearance of the original historic glass. 

Glasses that are manufactured using the Fourcault process differ from the float glasses that are used today mainly in terms of how they can be looked through and their outer appearance. When you look through machine-drawn restoration glasses, the even edges behind them look wavy. Floated glasses on the other hand leave an undistorted impression. When you look at the surface of a machine-drawn restoration glass, you will see unevenness, while a floated glass looks flat. 

Furthermore, all SCHOTT restoration glasses can be processed into insulating glass, laminated glass or safety glass. When it came to renovating the Van de Velde building at Bauhaus University in Weimar, insulating glass that consisted of an outer pane of TIKANA® glass was used. The external appearance of the building now resembles the aesthetics of the period in which it was used by the State Bauhaus in Weimar. TIKANA® was particularly well suited for this project because its slightly uneven surface fits in harmoniously with the buildings of the classical modern period. Besides its standard thickness of 4 mm, this glass can also be manufactured in 6 mm thickness and in lengths of up to 3,000 mm. 

In addition to TIKANA® glass, the restoration glass RESTOVER® is also manufactured using the Fourcault process. It resembles the window glass manufactured around the turn of the century. Thanks to its relative thinness, it can easily be installed in historic window frames and profiles. With RESTOVER® light, a more lightly structured surface version that resembles mouth-blown glass is now also available. RESTOVER® plus, on the other hand, has a more dominant structure. 

GOETHEGLAS is yet another restoration glass from SCHOTT, a colorless, drawn glass with an irregular surface full of character that was used predominantly in the 18th and 19th century. It is also suited for use as outdoor glazing, for instance to protect precious lead glazings from environmental and weather damages. 

SCHOTT’s complete product line includes not only machine-drawn restoration glasses, but also several high-quality architectural glasses: the decorative clear glass ARTISTA® for indoor and outdoor applications, the highly transparent, colorless flat glass RIVULETTA® with a surface structure that runs parallel on one side, the semi-transparent, anti-reflective glass MIRONA® and the dichroitic NARIMA® effects glass. The product line also includes coated specialty glasses such as anti-reflective AMIRAN® and MIROGARD®. Furthermore, SCHOTT offers the radiation shielding glass RD 50® for use in buildings, X-ray rooms, and operating rooms as a transparent alternative to other shielding materials. 

Other information is available under: http://www.schott.com/architecture/english/products/index.html

AMIRAN®, ARTISTA®, MIROGARD®, MIRONA®, NARIMA®, RESTOVER®, RIVULETTA®, TIKANA® and RD 50® are registered trademarks of SCHOTT AG.

SCHOTT AG

Dr Haike Frank

Public Relations Manager

Phone: +49 (0)6131 - 66 4088

haike.frank@schott.com

www.schott.com

ABOUT SCHOTT

SCHOTT is an international technology group with 130 years of experience in the areas of specialty glasses and materials and advanced technologies. SCHOTT ranks number one in the world with many of its products. Its core markets are the household appliance, pharmaceutical, electronics, optics and transportation industries. The company is strongly committed to contributing to its customers’ success and making SCHOTT an important part of people’s lives with high-quality products and intelligent solutions. SCHOTT is committed to managing its business in a sustainable manner and supporting its employees, society and the environment. The SCHOTT Group maintains close proximity to its customers with manufacturing and sales units in 35 countries. Its workforce of 15,400 employees generated worldwide sales of 1.84 billion euros for the 2012/2013 fiscal year. SCHOTT AG, with its headquarters in Mainz (Germany) is owned by the Carl Zeiss Foundation.

SCHOTT AG - Hattenbergstrasse 10 - 55122 Mainz - Germany Phone: +49 (0)6131/66-2411 - info.pr@schott.com - www.schott.com

Dr. Haike Frank | SCHOTT AG

More articles from Architecture and Construction:

nachricht Concrete from wood
05.07.2017 | Schweizerischer Nationalfonds SNF

nachricht Modular storage tank for tight spaces
16.03.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>