Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Machine-drawn restoration glasses from SCHOTT authentically manufactured

04.12.2014

TIKANA®, RESTOVER®, and GOETHEGLAS are manufactured using the historically authentic Fourcault process

The international technology group SCHOTT uses the authentic Fourcault process to manufacture its various architectural glasses for the restoration of historic buildings. This process is used to achieve an appearance that closely resembles the period in which the respective buildings were actually built.


When you look through restoration glasses such as RESTOVER® plus from SCHOTT, the even edges behind them look wavy. Photo: SCHOTT


Thanks to the insulating glass TIKANA®, the external appearance of the Van de Velde building at Bauhaus University in Weimar now resembles the aesthetics of the period in which it was used by the State Bauhaus in Weimar. Photo: SCHOTT

The restoration glasses that SCHOTT offers have also received European technical certification and therefore meet the demands of monument conservationists as well as building owners and users. Ulrich Huber, Sales Manager for Architectural Glasses at SCHOTT Advanced Optics, will be giving a presentation on this topic at the event “Denkmal und Energie” to be held in Osnabrück, Germany, on December 8.

“Based on historic technologies, the Fourcault process uses molten glass that is mechanically drawn upwards between several pairs of rollers on different floors of the building and then slowly cools them down. The continuous glass ribbon is finally cut into individual sheets at the top of the drawing shaft,” explains Ulrich Huber, Sales Manager for Architectural Glasses at SCHOTT Advanced Optics, in reference to how the drawing process works.

“The special characteristics of the restoration glasses are achieved by using this historically authentic production process,” Huber adds. The typical impression of a machine-drawn glass is characterized by deviations in terms of its thickness and flatness. Melting-related traits such as bubbles, nodes and stones within certain tolerances also contribute to the characteristic look of machine-drawn glasses. At the same time, all of the characteristics of glass can be influenced during the production process and be made to closely match the appearance of the original historic glass. 

Glasses that are manufactured using the Fourcault process differ from the float glasses that are used today mainly in terms of how they can be looked through and their outer appearance. When you look through machine-drawn restoration glasses, the even edges behind them look wavy. Floated glasses on the other hand leave an undistorted impression. When you look at the surface of a machine-drawn restoration glass, you will see unevenness, while a floated glass looks flat. 

Furthermore, all SCHOTT restoration glasses can be processed into insulating glass, laminated glass or safety glass. When it came to renovating the Van de Velde building at Bauhaus University in Weimar, insulating glass that consisted of an outer pane of TIKANA® glass was used. The external appearance of the building now resembles the aesthetics of the period in which it was used by the State Bauhaus in Weimar. TIKANA® was particularly well suited for this project because its slightly uneven surface fits in harmoniously with the buildings of the classical modern period. Besides its standard thickness of 4 mm, this glass can also be manufactured in 6 mm thickness and in lengths of up to 3,000 mm. 

In addition to TIKANA® glass, the restoration glass RESTOVER® is also manufactured using the Fourcault process. It resembles the window glass manufactured around the turn of the century. Thanks to its relative thinness, it can easily be installed in historic window frames and profiles. With RESTOVER® light, a more lightly structured surface version that resembles mouth-blown glass is now also available. RESTOVER® plus, on the other hand, has a more dominant structure. 

GOETHEGLAS is yet another restoration glass from SCHOTT, a colorless, drawn glass with an irregular surface full of character that was used predominantly in the 18th and 19th century. It is also suited for use as outdoor glazing, for instance to protect precious lead glazings from environmental and weather damages. 

SCHOTT’s complete product line includes not only machine-drawn restoration glasses, but also several high-quality architectural glasses: the decorative clear glass ARTISTA® for indoor and outdoor applications, the highly transparent, colorless flat glass RIVULETTA® with a surface structure that runs parallel on one side, the semi-transparent, anti-reflective glass MIRONA® and the dichroitic NARIMA® effects glass. The product line also includes coated specialty glasses such as anti-reflective AMIRAN® and MIROGARD®. Furthermore, SCHOTT offers the radiation shielding glass RD 50® for use in buildings, X-ray rooms, and operating rooms as a transparent alternative to other shielding materials. 

Other information is available under: http://www.schott.com/architecture/english/products/index.html

AMIRAN®, ARTISTA®, MIROGARD®, MIRONA®, NARIMA®, RESTOVER®, RIVULETTA®, TIKANA® and RD 50® are registered trademarks of SCHOTT AG.

SCHOTT AG

Dr Haike Frank

Public Relations Manager

Phone: +49 (0)6131 - 66 4088

haike.frank@schott.com

www.schott.com

ABOUT SCHOTT

SCHOTT is an international technology group with 130 years of experience in the areas of specialty glasses and materials and advanced technologies. SCHOTT ranks number one in the world with many of its products. Its core markets are the household appliance, pharmaceutical, electronics, optics and transportation industries. The company is strongly committed to contributing to its customers’ success and making SCHOTT an important part of people’s lives with high-quality products and intelligent solutions. SCHOTT is committed to managing its business in a sustainable manner and supporting its employees, society and the environment. The SCHOTT Group maintains close proximity to its customers with manufacturing and sales units in 35 countries. Its workforce of 15,400 employees generated worldwide sales of 1.84 billion euros for the 2012/2013 fiscal year. SCHOTT AG, with its headquarters in Mainz (Germany) is owned by the Carl Zeiss Foundation.

SCHOTT AG - Hattenbergstrasse 10 - 55122 Mainz - Germany Phone: +49 (0)6131/66-2411 - info.pr@schott.com - www.schott.com

Dr. Haike Frank | SCHOTT AG

More articles from Architecture and Construction:

nachricht Modular storage tank for tight spaces
16.03.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Smart homes will “LISTEN” to your voice
17.01.2017 | EML European Media Laboratory GmbH

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>