Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iowa State Engineers Developing Pavement Technologies to Clear Snow and Ice From Runways

04.03.2015

Alireza Sassani turned a switch and sent 60 volts of electricity into a small block of concrete. A few minutes later the Iowa State University doctoral student took some measurements and found the block’s surface temperature had risen from 64 degrees Fahrenheit to 189 degrees.

Next, Therin Young stepped up to the demonstration table and carefully squeezed drops of green-colored water on top of another set of small concrete blocks. The drops beaded on the concrete and, with the help of a little tilting by the master’s student, rolled right off the edge.


Photo by Christopher Gannon/Iowa State University.

Iowa State's Halil Ceylan checks a test slab that uses heated pavement technology to melt snow and ice. One of the goals of the research project is to help smaller airports clear runways during winter storms.

And then Halil Ceylan opened a walk-in freezer and showed off a pile of snow from one of Iowa’s winter storms. Behind the snow was a 2½-foot by 3½-foot concrete slab that was wet, but drying. Some 45 minutes earlier, that slab was buried in the snow.

All three technologies – electrically conductive concrete, nanostructured superhydrophobic coatings and hydronic heated pavements – are designed to quickly, economically and sustainably clear snow and ice from airport runways.

“These new technologies could prevent flight delays and keep airports accessible,” said Ceylan, an Iowa State associate professor of civil, construction and environmental engineering and director of the Program for Sustainable Pavement Engineering and Research at Iowa State’s Institute for Transportation.

“This provides a safe working platform for airport personnel and passengers,” he said. “And it’s environmentally friendly – airports don’t have to use tons of de-icing salts. This also translates into reduced emissions and costs because airports don’t have to treat the wastewater associated with de-icing of airport pavements, which is otherwise mandatory.”

The pavement research is part of the Federal Aviation Administration’s Center of Excellence Partnership to Enhance General Aviation Safety, Accessibility and Sustainability, or PEGASAS. The partnership was established in 2012 and is led by researchers at Purdue University. Other core members of the partnership are Iowa State, The Ohio State University, Georgia Institute of Technology, Florida Institute of Technology and Texas A&M University.

The FAA’s centers of excellence establish cost-sharing research partnerships with the federal government, universities and industry. PEGASAS researchers are studying a variety of general aviation issues including airport technology, flight safety and adverse weather operations.

The program is providing about $750,000 for Iowa State’s studies of snow- and ice-free runway pavements. The university is matching those funds.

Ceylan has assembled a team of 19 faculty, staff and students to develop the pavement technologies and analyze their costs and benefits. He said Iowa State, as home of the National Concrete Pavement Technology Center, is the perfect place to research and develop new ways to keep runways clear of snow and ice.

And so back in the Town Engineering Building’s pavements lab:

● Researchers have been adding various mixes of electrically conductive carbon fibers and powders into pavement materials. Put an electrical charge through the resulting pavements and they’re quickly hot enough to melt snow and ice.

The researchers are looking for just the right mix of pavement conductivity, workability, durability, economics and safety.

● Researchers have been spraying various nanomaterials (including PTFE, DuPont’s Teflon®) onto pavement test samples. The idea is to produce pavements that repel water. That would prevent snow and ice from sticking and make it easier for plows to clean up after a storm.

“This would be like a lotus leaf,” Ceylan said. “The water doesn’t stick to the surface.”

● Researchers have been pouring concrete around copper pipes to create test slabs for hydronic systems. The systems circulate heated liquid through the pipes, warming the pavement and melting any snow and ice from the surface.

Ceylan said one of the biggest challenges with the heated pavement technology is developing the advanced construction techniques to build large, reliable and economical systems.

So far, Ceylan said studies of all three technologies are moving ahead, showing promise and looking feasible. But larger-scale, outdoor tests are still needed. He’s hoping to install outdoor test panels – perhaps on campus – within the next year or so.

And while several major airports have expressed interest in testing the snow- and ice-clearing technologies, Ceylan said the real target is small, general aviation airports.

“General aviation airports don’t have the personnel and the equipment that the big airports have,” he said. “And so sometimes in the winter they just shut down. General aviation airports aren’t just concerned about cutting snow-removal costs, it’s a matter of keeping the airports open.”

Contact Information
Halil Ceylan, Civil, Construction and Environmental Engineering, 515-294-8051, hceylan@iastate.edu

Halil Ceylan | newswise
Further information:
http://www.iastate.edu

More articles from Architecture and Construction:

nachricht New, forward-looking report outlines research path to sustainable cities
24.01.2018 | National Science Foundation

nachricht Magnetic liquids improve energy efficiency of buildings
16.01.2018 | Friedrich-Schiller-Universität Jena

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>