Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovative Photovoltaics – from the Lab to the Façade

25.11.2015

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were developed and produced by the Institute and demonstrate the interplay of different technologies.


The Fraunhofer Institute for Solar Energy Systems ISE has integrated 70 PV modules of its own development and production into the building façade of one of its laboratories.

©Fraunhofer ISE

Together with industry, Fraunhofer ISE developed a crystalline PV module called “TPedge” using a process that saves both time and money and replaces the lamination step. Innovative back-contacted solar cells from the Institute’s own production are integrated into the module.

When the energy-efficient lab building was inaugurated in 2013, a few of the PV modules were installed on the façade for test purposes. Now the solar façade is complete and all 70 modules are in operation.

Solar Cells

The crystalline PV modules are based on an innovative solar cell technology using back contacts. This so-called “High Performance Metal Wrap Through” (HIP-MWT) concept was developed and patented by Fraunhofer ISE. The solar cells were developed in a near-industry process and produced in small-scale production at the Photovoltaic Technology Evaluation Center (PV-TEC) of Fraunhofer ISE.

“By using our fully automated production facilities, e. g. an innovative laser system for creating vias in silicon wafers, we were able to demonstrate industrial cycle times,” says Dr. Florian Clement, Group Head of MWT Solar Cells and Printing Technology. HIP-MWT solar cells with rear side passivation reach efficiencies of up to 20.5 percent.
Module

The solar cells are interconnected with a patented cell connector made of copper. This structured metal foil reduces the electrical stringing losses down to about 1 percent and minimizes the mechanical stress on the cells. “In the Module-TEC facility of Fraunhofer ISE, the solar cells are interconnected with a special back-contact stringer unit, developed jointly with the Somont company,” explains Dr. Harry Wirth, Division Director of Photovoltaic Modules, Systems and Reliability at Fraunhofer ISE.

Another innovative feature is the module encapsulation. The solar cells are not laminated in the conventional way, but rather fixed at points in a glass-glass module. The edges of the TPedge module are sealed with a thermoplastic material, making an aluminum frame unnecessary. This new type of module construction is also a Fraunhofer ISE invention, developed together with Bystronic glass and protected by patent.

Cooperation

In all, over 100 TPedge modules were manufactured using automated solutions developed by Fraunhofer ISE. A repres-entative sample of the modules was selected for tests and successfully passed sequences based on the IEC standard 61215. Both external and internal partners contributed to the success of this project.

“As mechanical engineers for architectural glass, we could demonstrate that a modified TPS® production line could also be used to manufacture TPedge for façade applications,” explains Tobias Neff, product manager at Bystronic glass, an industry partner of Fraunhofer ISE. “In our facility, a thin TPS® spacer was applied to the rear glass pane with the mounted solar cells. The glass panes were subsequently mounted together in an automated process and sealed with silicone.”

Façade Integration and Yield Analysis

Because of the close cooperation with the architects from an early stage on, a successful architectural integration of the PV modules and the neighboring fiber-cement plates could be achieved through a shared substructure on the façade. Since October, the PV façade provides electricity to consumers in the building.

To analyze operation, a team from Fraunhofer ISE is continuously monitoring the electric and meteorological parameters on site. The monitoring data shall also assist the scientists at Fraunhofer ISE to further improve their methods of yield analysis, especially for building-integrated facade systems experiencing partial shading.

Support

These developments were supported by the German Federal Ministry for Economic Affairs and Energy (BMWi) in different projects.

Weitere Informationen:

http://www.ise.fraunhofer.de

Karin Schneider | Fraunhofer-Institut für Solare Energiesysteme ISE

More articles from Architecture and Construction:

nachricht Flexible protection for "smart" building and façade components
30.11.2016 | Fraunhofer-Institut für Silicatforschung ISC

nachricht Healthy living without damp and mold
16.11.2016 | Fraunhofer-Gesellschaft

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>