Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hospital energy centre connected with heating network

26.11.2015

Working in conjunction with Giessen’s municipal utility company, Giessen and Marburg University Hospital has become the first German hospital to integrate its energy centre into an urban district heating network. The core of the combined cooling, heating and power plant is provided by four cogeneration modules that produce electricity and heat. The BINE Projektinfo brochure 12/2015 “Energy centre supplies Giessen University Hospital” describes the initial operating experiences.

The newly developed trigeneration plant reduces CO2 by around a third


The BINE Projektinfo brochure “Energy centre supplies Giessen University Hospital” (12/2015)

© BINE Informationsdienst

The four (CHP) modules supply electricity and heat. The chillers coupled to them cool sensitive hospital rooms and equipment. The advantage of this configuration is that the CHP units can be operated with a high number of full load hours, since a hospital requires a secure provision of cooling energy throughout the year.

If the heat supplied by the CHP units is not needed, both it and the cooling energy can be fed into the network belonging to the municipal utility company. This integration into the district heating and cooling network also provides optimum supply security for the University Hospital.

“After the supply system was extended and further linked, we were able to continually improve the operational times. The plant is now fully utilised. In addition, a peak load boiler with a capacity of 10 MW has been installed in the external area for use on extremely cold winter days,” says Christian Launhardt from the Stadtwerke Giessen municipal utility company.

You found all informations about the BINE Projektinfo brochure “Energy centre supplies Giessen University Hospital” (12/2015) here:

http://www.bine.info/en/press/press-releases/press/pressemitteilung/klinik-energ...

Uwe Milles/Birgit Schneider
presse(at)bine.info

About BINE Information Service

Energy research for practical applications

The BINE Information Service reports on energy research topics, such as new materials, systems and components, as well as innovative concepts and methods. The knowledge gained is incorporated into the implementation of new technologies in practice, because first-rate information provides a basis for pioneering decisions, whether in the planning of energy-optimised buildings, increasing the efficiency of industrial processes, or integrating renewable energy sources into existing systems.

About FIZ Karlsruhe

FIZ Karlsruhe – Leibniz Institute for Information Infrastructure is a not-for-profit organization with the public mission to make sci-tech information from all over the world publicly available and to provide related services in order to support the national and international transfer of knowledge and the promotion of innovation.
Our business areas:
• STN International – the world’s leading online service for research and patent information in science and technology
• KnowEsis – innovative eScience solutions to support the process of research in all its stages, and throughout all scientific disciplines
• Databases and Information Services – Databases and science portals in mathematics, computer science, crystallography, chemistry, and energy technology
FIZ Karlsruhe is a member of the Leibniz Association (WGL) which consists of 87 German research and infrastructure institutions.

Weitere Informationen:

http://www.bine.info/en - BINE Informationsdienst

Rüdiger Mack | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

More articles from Architecture and Construction:

nachricht Construction Impact Guide
18.05.2018 | Hochschule RheinMain

nachricht New, forward-looking report outlines research path to sustainable cities
24.01.2018 | National Science Foundation

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>