Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heating and cooling with environmental energy

22.09.2016

Environmental energy provides an efficient way to supply energy to non-residential buildings such as office and administration buildings, educational and recreational facilities as well as industrial sheds. The buildings can be efficiently heated and cooled using the combined use of thermo-active building systems and heat pumps. Across 24 pages, the new BINE-Themeninfo brochure entitled "Efficiently heating & cooling non-residential buildings" (II/2016) presents low-exergy concepts for these buildings.

In these concepts, the environmental heat sources, heating and cooling technology in the building and the comfort requirements of the users are matched as closely as possible with each other right from the beginning of the planning. This enables considerable energy efficiency.


The technical centre “Gebäude G” at the Biberach University of Applied Sciences. Different types of TABS are built-in here. The building is used for research and teaching.

© Hochschule Biberach. Institut für Gebäude- und Energiesysteme, Stefan Sättele

Optimising thermo-active building systems and heat pumps

In contrast to the current assessment of the energy consumed in buildings, which is purely quantitative, low-exergy concepts also take qualitative aspects of the energy conversion into consideration. The large surfaces of the thermally active components mean that moderate temperature differences between the heating system and indoor temperature are sufficient to heat and cool buildings. The temperature changes that transform environmental heat into usable heat are also correspondingly low – providing ideal conditions for the efficient operation of heat pumps. The more the temperature level of the heat source corresponds to the use, the lower the exergy utilisation.

In addition to the requirements for optimised building services technology, the BINE Themeninfo brochure also focusses on the planning, regulation, operational management and control. The content is rounded off with a look at the experiences gained from three research and demonstration buildings where low-exergy concepts have been implemented and measured over several years of operation. The authors are Professor Roland Koenigsdorff from the Institute for Building and Energy Systems (IGE) at Biberach University of Applied Sciences and Dr Doreen Kalz from the Fraunhofer Institute for Solar Energy Systems. She coordinated the LowEx:Monitor research project, in which 25 non-residential buildings were evaluated and measured in detail based on a model.

You found all informations about the BINE Themeninfo brochure entitled "Efficiently heating & cooling non-residential buildings" here:

http://www.bine.info/en/press/press-releases/archive-press-releases/pressemittei...

Uwe Milles/Birgit Schneider
presse(at)bine.info

About BINE Information Service

Energy research for practical applications

The BINE Information Service reports on energy research topics, such as new materials, systems and components, as well as innovative concepts and methods. The knowledge gained is incorporated into the implementation of new technologies in practice, because first-rate information provides a basis for pioneering decisions, whether in the planning of energy-optimised buildings, increasing the efficiency of industrial processes, or integrating renewable energy sources into existing systems.

About FIZ Karlsruhe

FIZ Karlsruhe – Leibniz Institute for Information Infrastructure is a not-for-profit organization with the public mission to make sci-tech information from all over the world publicly available and to provide related services in order to support the national and international transfer of knowledge and the promotion of innovation.
Our business areas:
• STN International – the world’s leading online service for research and patent information in science and technology
• KnowEsis – innovative eScience solutions to support the process of research in all its stages, and throughout all scientific disciplines
• Databases and Information Services – Databases and science portals in mathematics, computer science, crystallography, chemistry, and energy technology
FIZ Karlsruhe is a member of the Leibniz Association (WGL) which consists of 87 German research and infrastructure institutions.

Weitere Informationen:

http://www.bine.info/en - BINE Informationsdienst

Rüdiger Mack | idw - Informationsdienst Wissenschaft

More articles from Architecture and Construction:

nachricht Smart homes will “LISTEN” to your voice
17.01.2017 | EML European Media Laboratory GmbH

nachricht Designing Architecture with Solar Building Envelopes
16.01.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>