Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Green walls, effective acoustic insulation

05.01.2015

Zaloa Azkorra, an agricultural engineer of the UPV/EHU-University of the Basque Country, is conducting research at the University School of Mining and Public Works Engineering into the benefits provided by green walls. 

The researcher has concluded that walls comprising plants offer great potential for absorbing noise and could be used as acoustic insulation. Right now, she is conducting thermal studies on them. The researcher believes they could be beneficial in the future to offer a greener image of towns and cities, to improve the life quality of citizens, to save energy, to increase biodiversity, to control rainwater, to lessen town/city noise and to minimize waste and pollution.


Sala reverberacion web

The Department of Thermal Machines and Motors of the University School of Mining and Public Works Engineering is exploring the energy efficiency of buildings by conducting tests on various materials. Zaloa Azkorra, an agricultural engineer, began to study the acoustic and energy efficiency of green walls to find out their performance, since these walls consisting of vegetation could be beneficial in improving the life quality of citizens. 

Green walls are made up of plant modules: the plants are inserted into polyurethane boxes and are maintained by means of organic irrigation, in other words, they are fed and watered by means of a system similar to the hydroponic one used in greenhouses. It is not easy to grow plants this way or to insert them into a wall.

Noise absorption and insulation have been analysed while meeting the conditions established in ISO standards. The noise absorption test was carried out in a reverberation chamber (a chamber the walls of which are fitted with materials that reflect noise of the same type in all directions), using a range of frequencies. Green walls have thus been found to perform very well in high as well as low frequencies with respect to noise reduction (whereas other materials used in buildings only perform well at either high or low frequencies).

The way green walls may behave as acoustic insulation was also studied: plant modules were fitted onto a laboratory wall and the level of noise insulation was measured. The conclusion reached was that with some slight improvements (like increasing the mass of the modules or covering the space between them) the system can be made more effective and, as a result, the green walls could be suitable for acoustic insulation.

Efficient, but costly

The researcher is proposing that green walls be used in buildings, inside and outside, as they can improve the temperature and, what is more, they can achieve acoustic improvements. What is more, "they are attractive and cool," said Azkorra. But she also admitted at the same time that having such systems is costly and that, what is more, the systems need to be improved. As Azkorra pointed out, "apart from having plants on the walls, they have to be maintained and that is quite expensive". So right now she sees no alternative but to fit them in special buildings.

Now that the plant modules have been cultivated, she has begun to carry out thermal studies on them to study what benefits they can bring from the temperature perspective.

Z. Azkorra, G. Pérez, J. Coma, L. F. Cabeza, S. Bures, J. E. Álvaro, A. Erkoreka, M. Urrestarazu. "Evaluation of green walls as a passive acoustic insulation system for buildings". Applied Acoustics. Volume 89, March 2015, pp. 46-56.

Zaloa Azkorra (Bilbao, 1978) is an agricultural engineer. She lectures in the Department of Thermal Machines and Motors of the University School of Mining and Public Works Engineering of the UPV/EHU. She wrote up her thesis under the supervision of Aitor Erkoreka. She conducted the tests at the Quality Control Laboratory in the TECNALIA Building in the Department of Acoustics. She also had the help of Dr Miguel Urrestarazu of the University of Almeria to obtain the modules and the plants for carrying out the tests.

Matxalen Sotillo | AlphaGalileo

Further reports about: Green acoustic beneficial energy efficiency frequencies life quality materials walls

More articles from Architecture and Construction:

nachricht Smart homes will “LISTEN” to your voice
17.01.2017 | EML European Media Laboratory GmbH

nachricht Designing Architecture with Solar Building Envelopes
16.01.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>