Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Green walls, effective acoustic insulation

05.01.2015

Zaloa Azkorra, an agricultural engineer of the UPV/EHU-University of the Basque Country, is conducting research at the University School of Mining and Public Works Engineering into the benefits provided by green walls. 

The researcher has concluded that walls comprising plants offer great potential for absorbing noise and could be used as acoustic insulation. Right now, she is conducting thermal studies on them. The researcher believes they could be beneficial in the future to offer a greener image of towns and cities, to improve the life quality of citizens, to save energy, to increase biodiversity, to control rainwater, to lessen town/city noise and to minimize waste and pollution.


Sala reverberacion web

The Department of Thermal Machines and Motors of the University School of Mining and Public Works Engineering is exploring the energy efficiency of buildings by conducting tests on various materials. Zaloa Azkorra, an agricultural engineer, began to study the acoustic and energy efficiency of green walls to find out their performance, since these walls consisting of vegetation could be beneficial in improving the life quality of citizens. 

Green walls are made up of plant modules: the plants are inserted into polyurethane boxes and are maintained by means of organic irrigation, in other words, they are fed and watered by means of a system similar to the hydroponic one used in greenhouses. It is not easy to grow plants this way or to insert them into a wall.

Noise absorption and insulation have been analysed while meeting the conditions established in ISO standards. The noise absorption test was carried out in a reverberation chamber (a chamber the walls of which are fitted with materials that reflect noise of the same type in all directions), using a range of frequencies. Green walls have thus been found to perform very well in high as well as low frequencies with respect to noise reduction (whereas other materials used in buildings only perform well at either high or low frequencies).

The way green walls may behave as acoustic insulation was also studied: plant modules were fitted onto a laboratory wall and the level of noise insulation was measured. The conclusion reached was that with some slight improvements (like increasing the mass of the modules or covering the space between them) the system can be made more effective and, as a result, the green walls could be suitable for acoustic insulation.

Efficient, but costly

The researcher is proposing that green walls be used in buildings, inside and outside, as they can improve the temperature and, what is more, they can achieve acoustic improvements. What is more, "they are attractive and cool," said Azkorra. But she also admitted at the same time that having such systems is costly and that, what is more, the systems need to be improved. As Azkorra pointed out, "apart from having plants on the walls, they have to be maintained and that is quite expensive". So right now she sees no alternative but to fit them in special buildings.

Now that the plant modules have been cultivated, she has begun to carry out thermal studies on them to study what benefits they can bring from the temperature perspective.

Z. Azkorra, G. Pérez, J. Coma, L. F. Cabeza, S. Bures, J. E. Álvaro, A. Erkoreka, M. Urrestarazu. "Evaluation of green walls as a passive acoustic insulation system for buildings". Applied Acoustics. Volume 89, March 2015, pp. 46-56.

Zaloa Azkorra (Bilbao, 1978) is an agricultural engineer. She lectures in the Department of Thermal Machines and Motors of the University School of Mining and Public Works Engineering of the UPV/EHU. She wrote up her thesis under the supervision of Aitor Erkoreka. She conducted the tests at the Quality Control Laboratory in the TECNALIA Building in the Department of Acoustics. She also had the help of Dr Miguel Urrestarazu of the University of Almeria to obtain the modules and the plants for carrying out the tests.

Matxalen Sotillo | AlphaGalileo

Further reports about: Green acoustic beneficial energy efficiency frequencies life quality materials walls

More articles from Architecture and Construction:

nachricht Smart homes will “LISTEN” to your voice
17.01.2017 | EML European Media Laboratory GmbH

nachricht Designing Architecture with Solar Building Envelopes
16.01.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>