Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Concrete from wood

05.07.2017

Researchers from the National Research Programme "Resource Wood" have developed a type of concrete that largely consists of wood. The building material offers the construction industry new possibilities and is based in large part on renewable resources.

Houses can be made of wood, as they were in the past – or of concrete, as they are today. To build for tomorrow, the two building methods are being combined: these hybrid structures, which contain both wood and concrete elements, are becoming increasingly popular in contemporary architecture.


Researchers from the National Research Programme "Resource Wood" have developed a type of concrete that largely consists of wood. The building material offers the construction industry new possibilities and is based in large part on renewable resources.

In the context of the National Resource Programme "Resource Wood" (NRP 66), Swiss researchers have now developed an even more radical approach to combining wood and concrete: they are fabricating a load-bearing concrete which itself consists largely of wood. In many blends, the volume fraction of the wood is over 50 percent.

Cement-bonded wood products have been around for more than a hundred years. Yet previously they were used only for non-load-bearing purposes, such as insulation. Daia Zwicky, head of the Institute for Building and Environmental Technologies at the School of Engineering and Architecture of Fribourg, wondered whether it wasn't time for a more ambitious use of wood-based concrete.

Floating concrete

Together with his team, Zwicky experimented with the content and granularity of the wood as well as diverse additives and subsequently subjected the various blends to rigorous tests. The main difference from classical concrete is that the gravel and sand content is replaced with finely ground wood. In other words, sawdust rather than small stones is mixed in with the cement. Thanks to the high wood content, the new building materials show good flame retardance and act as thermal insulation.

"They weigh at most half of what normal concrete weighs – the lightest of them even float!" says Zwicky. Moreover, as the materials are based largely on renewable resources, after dismantling they can be reused as a source of heat and electricity. The wood content can be burnt in waste incineration, although for everyday use it conforms to fire protection standards.

Initial 1:1 stress tests show that the new wood-based concrete is also suitable for slab and wall elements and can provide a load-bearing function in construction. The process is also suited to prefabricated units. In this context, in particular, the Fribourg group would like to deepen their expertise through a broader range of tests. The researchers want to find out which wood-concrete composite is best for which applications, and how it can be produced efficiently.

"It will take several years before we see the first buildings in which lightweight concrete containing wood plays an integral role in the construction," says Zwicky. "The level of knowledge required for widespread application is still too limited."

Resource Wood (NRP 66)

In collaboration with industry, forest owners and authorities, the National Research Programme "Resource Wood" (NFP 66) aims to generate scientific insights and practical solutions to optimize the exploitation and use of wood in Switzerland. The overall final recommendations of NRP 66 will be published in four topical summary reports at the end of 2017. The Swiss National Science Foundation (SNSF) was commissioned by the Federal Council to run the programme.

National Research Programme (NRP 66)

Contact

Daia Zwicky
Institut für Bau- und Umwelttechnologien iTEC
HES-SO Hochschule für Technik und Architektur Fribourg
CH-1705 Fribourg
Tel. +41 26 429 69 50
E-mail daia.zwicky@hefr.ch

Publications

M. Maeder and D. Zwicky: Multi-functional features of pourable wood-cement compounds – mechanical, building-physical, economic and ecological performance. World Conference on Timber Engineering, At Vienna, Austria (August 2016).

M. Eymard and D. Zwicky: Slab elements made of timber and wood-cement compounds – structural and other performances. 3rd International Conference on Structures and Architecture, Guimarães (July 2016).

D. Zwicky and N. Macchi: Wall elements made of timber and wood-cement compounds – building-physical properties and structural performance. 3rd International Conference on Structures and Architecture, Guimarães (July 2016).

Weitere Informationen:

http://www.snsf.ch/press-releases Press release
http://www.snf.ch/en/researchinFocus/newsroom/Pages/news-170705-press-release-co...
http://www.nrp66.ch/ National Research Programme (NRP 66)
http://www.nrp66.ch/en/projects/dialogue-field-1-advancements-in-timber-construc... NRP 66 project "Wood and wood-based concrete"
http://www.snf.ch/SiteCollectionImages/Medienmitteilungen/170705_MM_NFP66_Holzbe... Download image (JPG, 4.3 MB)

Media Abteilung Kommunikation | idw - Informationsdienst Wissenschaft

More articles from Architecture and Construction:

nachricht Smart buildings through innovative membrane roofs and façades
31.08.2017 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Modular storage tank for tight spaces
16.03.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>