Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aspern: The City Next Door

15.10.2015

Austria’s capital is spawning a new city in which buildings, the electrical grid and the electricity market will be networked to create and evaluate synergistic efficiencies. The vision behind the project: Creation of a world-class living laboratory in which energy-saving technologies and new distribution grid solutions can be tested and optimized according to the requirements of future electricity markets.

A former airfield on the northeastern outskirts of Vienna, Austria is providing a test bed for technologies that could make cities increasingly energy efficient. Today, approximately two years after construction began, the airfield has been transformed into a small city – perhaps the first ever to be built so that scientists and urban planners can learn how buildings, renewable energy sources, local electrical distribution networks, and the entire grid can optimize their interactions in order to maximize their efficiency and minimize their collective energy use.


Vienna's Aspern project has been designed to test technologies that could make future cities increasingly energy efficient.


Aspern's planned energy management system will integrate and coordinate information as well as energy.

Known as “Aspern – Vienna’s Urban Lakeside,” this new citadel of technology could be important for cities everywhere because, if the battle to contain climate change is to be won, it will be fought in cities, which is where 75 percent of the world’s energy is consumed and 85 percent of its greenhouse gases are produced.

At 240-hectares, Aspern is one of Europe’s biggest urban development projects. Already, it includes approximately 3,420 apartments, part of a school campus, dormitories, and a research center for the analysis of advanced manufacturing technologies (see insert).

By 2028 it is scheduled to have around 8,500 apartments, 20,000 jobs, and a commercial campus – all within a 25-minute subway ride from downtown Vienna and a 28-minute train trip to Bratislava’s central station in the Slovak Republic.

Measuring Urban Energy Efficiency

Aspern is not just another big real estate development project. What sets it apart from dozens of other major projects around the world is a € 40 million joint venture (JV) between the City of Vienna, the city’s utility companies (Wien Energie and Wiener Netze), and Siemens – the only industrial partner involved in the project.

Indeed, a coordinated research plan driven by Siemens Corporate Technology (CT), and the company’s Energy Management and Building Technologies divisions calls for the city to be a test bed for the integration of technologies that support energy efficiency and sustainable urban development.

Already Number 1 on the UN’s Livable Cities Index and heading the list of “The Top 10 Smart Cities on the Planet,” Vienna wants to learn how to further reduce its environmental footprint. But meeting that goal in a meaningful way calls for it to objectively determine its current level of energy efficiency, which is the first step on the road to measuring improvements over time.

And that’s exactly what Siemens is aiming for in Aspern. The company has assembled a three-part package, the essential components of which are technologies for power management in smart buildings, solutions for the low voltage grid – the electrical distribution system from transformers down to individual buildings and apartments – and solutions for managing “big data” that include the establishment of a City Data Center.

Unlike virtually any other large-scale urban development project, in Aspern all of the elements in these systems – regardless of manufacturer – must be able to communicate with one another in the interest of sharing data.

At 240-hectares, Aspern is one of Europe’s biggest urban development projects.


When Buildings Speak

But overcoming this challenge has a price – at least in terms of initial capital outlays. That’s why the Aspern JV is covering the difference in cost between conventional and smart components – as well as the installation of many renewable energy systems – and why such systems are being installed in only a representative selection of Aspern buildings. In order to maximize what it can learn about energy use optimization, the JV is therefore supporting installation of different “mixes” of technologies ranging from photovoltaic panels and heat pumps to a variety of energy storage solutions. Aside from optimizing energy use in buildings themselves, this research is being focused on the potential of buildings to flexibly generate energy for the grid. In order to accomplish this goal, two systems are required. The first is an onboard Building Energy Management System (BEMS) that calculates a building’s electricity use and level of energy flexibility at regular intervals. The second is an Energy Pool Manager that acts as an interface between individual buildings and an electricity exchange system.

With the express permission of more than 100 households, data for this research is now being generated. The data, which covers factors such as power consumption, air quality and room temperature, is collected and linked with data from the power grid, as well as real-time weather and public event-related information. In addition, Aspern’s new low voltage grid, which consists of twelve grid stations and 24 transformers, is equipped with a network of sensors for real-time measurements of its behavior. Eventually, all of the data generated by the above systems will flow into a City Data Center. All in all, by analyzing the most efficient mixes of technologies and their influence on end-user behavior, the Aspern JV expects this advanced combination of IT infrastructures to shed light on the correlations among underlying systems with a view to optimizing a wide range of services.


Making Sense of Hybrid Data

Understanding those correlations will, however, pose significant challenges in terms of interpretation. For instance, monitoring of the low voltage grid is basically a new area of research. Indeed, scientists are already beginning to evaluate the data generated by building systems in order to understand the relationships between variables and the factors affecting both the grid and the buildings. That, in turn, calls for the development of specialized algorithms capable of making sense of the new data. The resulting information will be particularly important because plans call for a high level of integration of renewable energy systems. Researchers will therefore be analyzing how different energy sources, working in different mixes, and under changing weather conditions will affect the grid and buildings – a line of research designed to lead to forecast optimization and steadily improving levels of energy efficiency.

Among the many unique features of Aspern’s “living lab” concept is that the cost efficiency of its electrical grid will not be based on a classic demand-response system. Instead, the idea is to maximize local generation, storage, and energy use. After that, the next level of research will focus on enhanced interaction of local generation and demand with the smart, low voltage grid, which will open the door to energy coordination between buildings and the grid.

Thus, in buildings equipped with energy-saving technologies from Aspern’s joint venture, a building management system will coordinate energy supply from photovoltaic or solar-thermal systems to the building’s heat pumps. Such systems will accomplish this by including data from energy forecasting, generation, and storage management – a huge data integration challenge.

In short, Aspern is on the road to becoming a very important proof point for smart grids – a living laboratory in which buildings, production plants and multi-modal energy systems are integrated, and a final proof of concept that the smart city really can work.


Arthur F. Pease

Redaktion
Sebastian Webel
Dr. Norbert Aschenbrenner
Dr. Johannes von Karczewski

Kontakt für Journalisten
Florian Martini
Tel.: +49 (89) 636-33446

Arthur F. Pease | Siemens Pictures of the Future
Further information:
http://www.siemens.com

More articles from Architecture and Construction:

nachricht New, forward-looking report outlines research path to sustainable cities
24.01.2018 | National Science Foundation

nachricht Magnetic liquids improve energy efficiency of buildings
16.01.2018 | Friedrich-Schiller-Universität Jena

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

Im Focus: Stronger evidence for a weaker Atlantic overturning

The Atlantic overturning – one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards – is weaker today than any time before in more than 1000 years. Sea surface temperature data analysis provides new evidence that this major ocean circulation has slowed down by roughly 15 percent since the middle of the 20th century, according to a study published in the highly renowned journal Nature by an international team of scientists. Human-made climate change is a prime suspect for these worrying observations.

“We detected a specific pattern of ocean cooling south of Greenland and unusual warming off the US coast – which is highly characteristic for a slowdown of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Improved stability of plastic light-emitting diodes

19.04.2018 | Power and Electrical Engineering

Enduring cold temperatures alters fat cell epigenetics

19.04.2018 | Life Sciences

New capabilities at NSLS-II set to advance materials science

18.04.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>