Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wheat research discovery yields genetic secrets that could shape future crops

09.04.2018

A new study has isolated a gene controlling shape and size of spikelets in wheat

A new study has isolated a gene controlling shape and size of spikelets in wheat in a breakthrough which could help breeders deliver yield increases in one of the world's most important crops.


This is floral architecture in wheat. The spikelets highlighted in purple are the additional spikelets which form part of the paired spikelets.

Credit: CSIRO

The team from the John Innes Centre say the underlying genetic mechanism they have found is also relevant to inflorescence (floral) architecture in a number of other major cereals including corn, barley and rice.

The genetic identification of an agronomically-relevant trait represents a significant milestone in research on wheat; a crop with a notoriously complex genome.

The findings, published today in the journal The Plant Cell, give breeders a new tool to accelerate the global quest to improve wheat. The study also highlights a range of next generation techniques available for fundamental research into wheat, the world's most abundantly produced crop.

The Wheat Initiative, which co-ordinates global research for wheat, has identified floral architecture as one of the key traits which must be improved if a 1.6% yield increase needed to feed a growing world population is to be reached.

Dr Scott Boden from the John Innes Centre, whose crop genetics laboratory led the study alongside colleagues from Australia and Cambridge, said it represented a breakthrough both in lab and field.

"This paper is an example of what we are capable of doing in wheat now with a lot of the resources that are coming on board. We have gone from the field to the lab and back again. This is a developmental gene that contributes to a lot of agronomically important traits. This knowledge and the resources that come from this study can be used to see if it really does benefit yield."

"We have approached this in an academic sense but we have moved it towards giving breeders tools they can work with to optimise floral development."

Diversity of floral architecture has been exploited by generations of crop breeders to increase yields, and genetic variation for this trait has the potential to further boost grain production.

The study focused on the genetics behind a specific mutant trait in bread wheat known as paired spikelets, where a wheat inflorescence is formed of two spikelets instead of the usual one. This trait, which bears resemblance to flower production in corn and rice, is a variation that could lead to increase in yield.

Using a range of techniques including plant transformation, gene sequencing and speed breeding, researchers investigated lines of wheat displaying paired spikelets, derived from a mapping population called a multi-parent advanced generation intercross (MAGIC); a population of spring wheat created as a tool to study and identify the genetic origins of relevant traits.

The study revealed that a gene called TEOSINTE BRANCHED1 (TB1) regulates wheat inflorescence architecture, promoting paired spikelets via a mechanism which delays flowering and reduces the expression of genes that control the development of lateral branches called spikelets.

Further analysis showed that alleles that modify the function of TB1 were present in a wide range of major modern wheat cultivars used by breeders in the UK and Europe. Also, that variant alleles for TB1 were present on two of the three wheat genomes of winter and spring wheat.

Genetic analysis also showed that TB1 is linked to another gene that has been known for a long time: the so-called Green Revolution gene, Rht-1, which controls plant height.

Further studies will determine whether some of the effects attributed to Rht-1 are actually TB1 effects.

The authors of the study say the TB1 gene is also important to the contribution of floral architecture diversity in a number of other cereals including corn, barley and rice - with interest in the paper already coming from those research communities.

Dr Boden hopes that one of the impacts of the paper will be to encourage more early-career researchers to choose wheat for developmental research projects.

The full findings are available in the paper: Teosinte Branched1 regulates inflorescence architecture and development in bread wheat.

###

http://www.plantcell.org/content/early/2018/02/14/tpc.17.00961

Pictures/Media and captions:

https://drive.google.com/open?id=1lWWLlcpqJY1TRZrW0RsXbO3Bthw96CuF

Notes for Editors

Contacts

Press Contact: Adrian Galvin - Adrian.Galvin@jic.ac.uk

Tel: 01603 450238 Out of Hours Tel: 07881 255193

About the John Innes Centre

The John Innes Centre is an independent, international centre of excellence in plant science and microbiology.

Our mission is to generate knowledge of plants and microbes through innovative research, to train scientists for the future, to apply our knowledge of nature's diversity to benefit agriculture, the environment, human health, and wellbeing, and engage with policy makers and the public.

To achieve these goals we establish pioneering long-term research objectives in plant and microbial science, with a focus on genetics. These objectives include promoting the translation of research through partnerships to develop improved crops and to make new products from microbes and plants for human health and other applications. We also create new approaches, technologies and resources that enable research advances and help industry to make new products. The knowledge, resources and trained researchers we generate help global societies address important challenges including providing sufficient and affordable food, making new products for human health and industrial applications, and developing sustainable bio-based manufacturing.

This provides a fertile environment for training the next generation of plant and microbial scientists, many of whom go on to careers in industry and academia, around the world.

The John Innes Centre is strategically funded by the Biotechnology and Biological Sciences Research Council (BBSRC). In 2015-2016 the John Innes Centre received a total of £30.1 million from the BBSRC.

The John Innes Centre is also supported by the John Innes Foundation through provision of research accommodation and long-term support of the Rotation PhD programme.

The John Innes Centre is the winner of the BBSRC's 2013 - 2016 Excellence with Impact award.

For more information about the John Innes Centre visit our website http://www.jic.ac.uk

About BBSRC

The Biotechnology and Biological Sciences Research Council (BBSRC) is part of UK Research and Innovation, a non-departmental public body funded by a grant-in-aid from the UK government.

BBSRC invests in world-class bioscience research and training on behalf of the UK public. Our aim is to further scientific knowledge, to promote economic growth, wealth and job creation and to improve quality of life in the UK and beyond.

Funded by government, BBSRC invested £469 million in world-class bioscience in 2016-17. We support research and training in universities and strategically funded institutes. BBSRC research and the people we fund are helping society to meet major challenges, including food security, green energy and healthier, longer lives. Our investments underpin important UK economic sectors, such as farming, food, industrial biotechnology and pharmaceuticals

For more information about BBSRC, our science and our impact see: http://www.bbsrc.ac.uk

For more information about BBSRC strategically funded institutes see: http://www.bbsrc.ac.uk/institutes

Media Contact

Adrian Galvin
Adrian.Galvin@JIC.ac.uk
01-603-450-238

 @johninnescentre

http://www.jic.ac.uk 

Adrian Galvin | EurekAlert!

Further reports about: BBSRC Biological Sciences Research cereals crop crops genetic secrets human health

More articles from Agricultural and Forestry Science:

nachricht Faba fix for corn's nitrogen need
11.04.2018 | American Society of Agronomy

nachricht Satellites, supercomputers, and machine learning provide real-time crop type data
05.04.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

Im Focus: Stronger evidence for a weaker Atlantic overturning

The Atlantic overturning – one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards – is weaker today than any time before in more than 1000 years. Sea surface temperature data analysis provides new evidence that this major ocean circulation has slowed down by roughly 15 percent since the middle of the 20th century, according to a study published in the highly renowned journal Nature by an international team of scientists. Human-made climate change is a prime suspect for these worrying observations.

“We detected a specific pattern of ocean cooling south of Greenland and unusual warming off the US coast – which is highly characteristic for a slowdown of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

New capabilities at NSLS-II set to advance materials science

18.04.2018 | Materials Sciences

Strong carbon fiber artificial muscles can lift 12,600 times their own weight

18.04.2018 | Materials Sciences

Polymer-graphene nanocarpets to electrify smart fabrics

18.04.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>