Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Wake Forest research confirms controversial nitrite hypothesis


Understanding how nitrite can improve conditions such as hypertension, heart attack and stroke has been the object of worldwide research studies. New research from Wake Forest University has potentially moved the science one step closer to this goal.

In a paper published online ahead of print in the February issue of the Journal of Biological Chemistry, senior co-author Daniel Kim-Shapiro, professor of physics at Wake Forest, and others show that deoxygenated hemoglobin is indeed responsible for triggering the conversion of nitrite to nitric oxide, a process that affects blood flow and clotting.

“We have shown that conversion of nitrite to nitric oxide by deoxygenated hemoglobin in red blood cells reduces platelet activation,” Kim-Shapiro said. “This action has implications in treatments to reduce clotting in pathological conditions including sickle cell disease and stroke.”

In 2003, Kim-Shapiro collaborated with Mark Gladwin, now at the University of Pittsburgh, who led a study that showed that nitrite (which is also used to cure processed meats), is not biologically inert as had been previously thought, but can be converted to the important signaling molecule nitric oxide (NO), and thereby increase blood flow. At that time, the researchers hypothesized that the conversion of nitrite to NO was due to a reaction with deoxygenated hemoglobin in red blood cells.

The main goal of the latest research, Kim-Shapiro said, was to determine how red blood cells perform these important signaling functions that lead to increased blood flow. The researchers used several biophysical techniques to measure NO production from nitrite and red blood cells and examined the mechanism of NO production.

“Importantly, this action was increased under conditions of low oxygen – so nitrite acts to increase blood flow in the body just when it is needed. What we’re showing with this research is what part of the red cell is doing this, and it’s consistent with our original hypothesis,” he said. “This speaks to the mechanisms and how they work – to how nitrite is dilating blood vessels and reducing clotting.”

As director of Wake Forest University’s Translational Science Center, Kim-Shapiro and others have conducted studies that look at how nitrite and its biological precursor, nitrate (found in beet root juice) can be utilized in treatments for a variety of conditions. In a 2010 study, they were the first to find a link between consumption of nitrate-rich beet juice and increased blood flow to the brain.

Kim-Shapiro said that next steps in the research include examining whether all red blood cells have this activation function and whether this function is diminished in red cell diseases like sickle cell disease, other blood diseases, or in the transfusion of older blood.

“Does this important function that we can now attribute to the hemoglobin in the red cells get compromised under certain conditions? And if so, how can we enhance it?” he said.

This work was supported by NIH grants HL058091, HL098032, and the Translational Science Center of Wake Forest University and Hypertension & Vascular Research Center of Wake Forest School of Medicine.

Lead co-authors include Chen Liu and Nadeem Wajih, of WFU department of physics. Contributing authors include Xiaohua Liu, Swati Basu, John Janes, Madison Marvel, Christian Keggi, Amber N. Lee, Andrea M. Belanger, Debra I. Diz, Paul J. Laurienti, and David L. Caudell, all of Wake Forest; Christine C. Helms, University of Richmond; and Jun Wang and Mark T. Gladwin, from the Lung, Blood and Vascular Medicine Institute at the University of Pittsburgh.

Bonnie Davis | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Algorithm could streamline harvesting of hand-picked crops
13.03.2018 | University of Illinois College of Engineering

nachricht A global conflict: agricultural production vs. biodiversity
06.03.2018 | Georg-August-Universität Göttingen

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>