Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Vermicompost leachate improves tomato seedling growth


Environment-friendly fertilizer supplement stands up to temperature, water stresses

Worldwide, drought conditions, extreme temperatures, and high soil saline content all have negative effects on tomato crops. These natural processes reduce soil nutrient content and lifespan, result in reduced plant growth and yield, and ultimately translate to lower profits for tomato producers. As an alternative to unsustainable practices such as the use of synthetic fertilizers, producers are looking to environment-friendly soil ameliorants such as verimcompost leachate, an organic liquid produced from earthworm-digested material and casts that occur during the vermicomposting process.

"Earthworm casts present in vermicompost contain proteins, vitamins, and micro- and macro-elements such as nitrogen, phosphorous, potassium, calcium, and magnesium," explained Johannes Van Staden, lead author of a recent study published in HortScience. Van Staden and colleagues Mayashree Chinsamy and Manoj Kulkarni, from the Research Centre for Plant Growth and Development at the University of KwaZulu-Natal Pietermaritzburg, studied the effects of vermicompost-leachate (VCL) on tomato seedlings subjected to various temperatures and levels of water stress.

To investigate temperature stress, potted tomato seedlings were exposed to temperatures of 10, 15, 20, 25, and 30 °C and treated with and without vermicompost leachate (1:10 v/v). The experiments of water stress involved established tomato seedlings treated with and without VCL (1:10 v/v) treated with varying volumes (15, 30, and 45 mL) of half-strength nutrient solution. "Most of the morphological parameters of VCL-treated tomato seedlings were not only markedly enhanced at optimum temperature (25 °C), but also exhibited significant improvement under high temperature (30 °C)," the researchers wrote. "At lower temperatures (10, 15, and 20 °C), although VCL promoted several growth parameters of a tomato seedling, this improvement did not differ significantly with the respective controls."

The water stress experiments showed that photosynthetic pigments and compatible solute contents were significantly reduced in VCL-treated tomato seedlings at 15 mL. "Physiological parameters were reduced within the range of those found in more favorable conditions as observed for 30-mL supply of nutrient solution," the authors noted. The scientists said that the results of these water stress experiments clearly demonstrate the possibility of using less water resources to produce quality crops.

The results also showed that the constant supply of VCL improved morphological characters, including leaf area and shoot/root biomass, enabling VCL-treated tomato seedlings to perform better. The scientists concluded that vermicompost-leachate is a suitable soil amendment alternative that can significantly improve overall crop performance of tomato seedlings under abiotic stresses. "More importantly, VCL is organic and therefore can be used as an environment-friendly fertilizer supplement," they added.

The complete study and abstract are available on the ASHS HortScience electronic journal web site:

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application.

More information at

Michael W. Neff | EurekAlert!

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>