Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UF/IFAS Study: Wheat Yield to Decline as Temperatures Increase

15.01.2015

For every degree Celsius that the temperature increases, the world loses 6 percent of its wheat crop, according to a new global study led by a University of Florida scientist. That’s one fourth of the annual global wheat trade, which reached 147 million tons in 2013.

Senthold Asseng, a UF professor of agricultural and biological engineering, used a computer model approach to reach the finding of temperature increases and wheat production.


Amy L. Stuart, UF/IFAS photographer

Research Assistant Jeremy Hall examines newly planted wheat at the UF/IFAS Plant Science Research and Education Unit on Jan. 13, 2015 in Citra, Florida. The world will lose 6 percent of its wheat crop for every degree Celsius that the temperature rises, according to new research led by UF/IFAS agricultural and biological engineering Professor Senthold Asseng.

“We started this with wheat, as wheat is one of the world’s most important food crops,” said Asseng, whose team’s study was published online Dec. 22 in the journal Nature Climate Change. “The simulations with the multi-crop models showed that warming is already slowing yield gains, despite observed yield increases in the past, at a majority of wheat-growing locations across the globe.”

Global food production needs to grow 60 percent by 2050 to meet the projected demand from an anticipated population of more than 9 billion people. That’s a huge agricultural challenge, complicated by temperature increases due to climate change, Asseng said.

For 20 years, scientists have been trying to estimate the effects of temperature increase and climate change on various crops and on wheat production, which accounts for 20 percent of calories consumed globally.

But different research groups came up with different results.

By pooling models, as part of the global Agricultural Model Intercomparison and Improvement Project (AgMIP), scientists found they can better predict the impact of warmer temperatures on wheat yield, said Asseng, an Institute of Food and Agricultural Sciences faculty member.

Asseng led a group of 50 scientists from 15 countries who devised an ensemble of computer models to increase the accuracy of their predictions. They worked with 30 wheat crop models and tested them against field experiments. In those experiments, average season temperatures ranged from 15 to 32 degrees Celsius, or 59 to 89.6 degrees Fahrenheit.

The ensemble of models consistently simulated crop temperature responses more accurately than did any single model.

In the past 100 years, global temperatures have risen by more than 0.6 degrees and are projected to increase by 2 to 4 degrees Celsius by the end of the century, according to the International Panel on Climate Change.

New heat-tolerant wheat cultivars and crop management are needed to counteract the projected yield decline, and crop models will play a major role in developing new research strategies for that, said Asseng.

The UF/IFAS scientist coordinated the study with co-author Frank Ewert, a professor with the Institute of Crop Science and Resource Conservation at the University of Bonn in Germany, and Pierre Martre, a senior scientist at the French national research institute INRA.

By Brad Buck, 352-294-3303, bradbuck@ufl.edu
Source: Senthold Asseng, 352-392-1864, ext. 221, sasseng@ufl.edu

Brad Buck | newswise
Further information:
http://www.ufl.edu

More articles from Agricultural and Forestry Science:

nachricht Cascading use is also beneficial for wood
11.12.2017 | Technische Universität München

nachricht The future of crop engineering
08.12.2017 | Max-Planck-Institut für Biochemie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>