Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transforming Biochar Into Activated Carbon

02.02.2015

Bioprocessing engineer turns agricultural residue into energy storage material

It’s about transforming corn stover, dried distillers grain solids (DDGS) and even native grasses into a product more than 1,000 times more valuable—graphene.


Photo by Emily Weber

Golden-colored dried distillers grain solids (DDGS) are heated in an oven flooded with nitrogen gas to produce biochar, which can then be converted to graphene, and ultimately used for energy storage in supercapacitors.

The pyrolysis process turns plant materials into bio-oil and biochar, according to assistant professor Zhengrong Gu of the South Dakota State University agricultural and biosystems engineering department. When the bio-oil is further processed, it becomes biofuel.

Gu is converting biochar, a charcoal-like material, into graphene which can be used in place of expensive, activated carbon to coat the electrodes of energy storage devices—supercapacitors.

Small engines use start-up and run capacitors, Gu explained, but supercapacitors have more rapid charge and discharge rates as well as a higher energy storage capacity. Unlike conventional batteries, supercapacitors can withstand low temperatures.

To manufacture these storage devices, the United States now imports most of its activated carbon from Asia—including Japan, Thailand and China. “We can use these abundant agricultural materials as biofuel to reduce our dependence on petroleum and, at the same time, generate good active carbon to export,” Gu said.

Increasing product value
Gu estimated that approximately 2.2 pounds of graphene is worth at least $1,000. A pound of DDGS costs 7.5 to 9 cents and converts to approximately 7 ounces of graphene.

“That’s the increased value of the product,” Gu said. “We can convert agricultural residue to a high-value product that is easy to ship.”

Once the DDGS or corn stover is transformed to biochar, Gu mixes chemical called a catalyst with the biochar and heats the mixture to 1,292 degrees Fahrenheit for one hour to make porous graphene.

“It’s a one-step process,” he said. He estimated production costs, including feedstock, at about $1.36 for a pound of graphene.

Using the native grass big blue stem as the feedstock, Gu said, “we save more on feedstock.”

In addition, Gu hopes to adapt a new plasma processing technique developed at SDSU that reduces the processing time to five minutes and the temperature to 302 degrees Fahrenheit to convert biochar to graphene.

That could result in a significant cost savings, he added.

Optimizing material properties
Though Gu’s processing method generates graphene with the properties needed to capture and discharge electricity, he admitted, “We don’t know how the reaction happens.”

Through a $775,155 grant from the National Science Foundation along with $332,210 in university matching funds, Gu and a team of SDSU researchers studying carbon materials and biofuel technologies have purchased a transmission electron microscope will help advance this and other projects campuswide. The instrument should arrive this spring.

“We can find out how the process happens and learn how to change the parameters to improve the end product,” Gu said.

With the microscope, he and his team can determine the internal material structure and how the morphology changes its energy storage properties much like doctors use a CT scan to examine the human body, Gu explained. They can also find out whether biochar from one type of feedstock produces better graphene than another.

About South Dakota State University
Founded in 1881, South Dakota State University is the state’s Morrill Act land-grant institution as well as its largest, most comprehensive school of higher education. SDSU confers degrees from eight different colleges representing more than 175 majors, minors and specializations. The institution also offers 32 master’s degree programs, 15 Ph.D. and two professional programs. The work of the university is carried out on a residential campus in Brookings, at sites in Sioux Falls, Pierre and Rapid City, and through Cooperative Extension offices and Agricultural Experiment Station research sites across the state.

Contact Information
Christie Delfanian
Research Writer
christie.delfanian@sdstate.edu
Phone: 605-688-4541
Mobile: 605-651-4183

Christie Delfanian | newswise
Further information:
http://www.sdstate.edu

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>