Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transforming Biochar Into Activated Carbon

02.02.2015

Bioprocessing engineer turns agricultural residue into energy storage material

It’s about transforming corn stover, dried distillers grain solids (DDGS) and even native grasses into a product more than 1,000 times more valuable—graphene.


Photo by Emily Weber

Golden-colored dried distillers grain solids (DDGS) are heated in an oven flooded with nitrogen gas to produce biochar, which can then be converted to graphene, and ultimately used for energy storage in supercapacitors.

The pyrolysis process turns plant materials into bio-oil and biochar, according to assistant professor Zhengrong Gu of the South Dakota State University agricultural and biosystems engineering department. When the bio-oil is further processed, it becomes biofuel.

Gu is converting biochar, a charcoal-like material, into graphene which can be used in place of expensive, activated carbon to coat the electrodes of energy storage devices—supercapacitors.

Small engines use start-up and run capacitors, Gu explained, but supercapacitors have more rapid charge and discharge rates as well as a higher energy storage capacity. Unlike conventional batteries, supercapacitors can withstand low temperatures.

To manufacture these storage devices, the United States now imports most of its activated carbon from Asia—including Japan, Thailand and China. “We can use these abundant agricultural materials as biofuel to reduce our dependence on petroleum and, at the same time, generate good active carbon to export,” Gu said.

Increasing product value
Gu estimated that approximately 2.2 pounds of graphene is worth at least $1,000. A pound of DDGS costs 7.5 to 9 cents and converts to approximately 7 ounces of graphene.

“That’s the increased value of the product,” Gu said. “We can convert agricultural residue to a high-value product that is easy to ship.”

Once the DDGS or corn stover is transformed to biochar, Gu mixes chemical called a catalyst with the biochar and heats the mixture to 1,292 degrees Fahrenheit for one hour to make porous graphene.

“It’s a one-step process,” he said. He estimated production costs, including feedstock, at about $1.36 for a pound of graphene.

Using the native grass big blue stem as the feedstock, Gu said, “we save more on feedstock.”

In addition, Gu hopes to adapt a new plasma processing technique developed at SDSU that reduces the processing time to five minutes and the temperature to 302 degrees Fahrenheit to convert biochar to graphene.

That could result in a significant cost savings, he added.

Optimizing material properties
Though Gu’s processing method generates graphene with the properties needed to capture and discharge electricity, he admitted, “We don’t know how the reaction happens.”

Through a $775,155 grant from the National Science Foundation along with $332,210 in university matching funds, Gu and a team of SDSU researchers studying carbon materials and biofuel technologies have purchased a transmission electron microscope will help advance this and other projects campuswide. The instrument should arrive this spring.

“We can find out how the process happens and learn how to change the parameters to improve the end product,” Gu said.

With the microscope, he and his team can determine the internal material structure and how the morphology changes its energy storage properties much like doctors use a CT scan to examine the human body, Gu explained. They can also find out whether biochar from one type of feedstock produces better graphene than another.

About South Dakota State University
Founded in 1881, South Dakota State University is the state’s Morrill Act land-grant institution as well as its largest, most comprehensive school of higher education. SDSU confers degrees from eight different colleges representing more than 175 majors, minors and specializations. The institution also offers 32 master’s degree programs, 15 Ph.D. and two professional programs. The work of the university is carried out on a residential campus in Brookings, at sites in Sioux Falls, Pierre and Rapid City, and through Cooperative Extension offices and Agricultural Experiment Station research sites across the state.

Contact Information
Christie Delfanian
Research Writer
christie.delfanian@sdstate.edu
Phone: 605-688-4541
Mobile: 605-651-4183

Christie Delfanian | newswise
Further information:
http://www.sdstate.edu

More articles from Agricultural and Forestry Science:

nachricht Microjet generator for highly viscous fluids
13.02.2018 | Tokyo University of Agriculture and Technology

nachricht Sweet route to greater yields
08.02.2018 | Rothamsted Research

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>