Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transforming Biochar Into Activated Carbon

02.02.2015

Bioprocessing engineer turns agricultural residue into energy storage material

It’s about transforming corn stover, dried distillers grain solids (DDGS) and even native grasses into a product more than 1,000 times more valuable—graphene.


Photo by Emily Weber

Golden-colored dried distillers grain solids (DDGS) are heated in an oven flooded with nitrogen gas to produce biochar, which can then be converted to graphene, and ultimately used for energy storage in supercapacitors.

The pyrolysis process turns plant materials into bio-oil and biochar, according to assistant professor Zhengrong Gu of the South Dakota State University agricultural and biosystems engineering department. When the bio-oil is further processed, it becomes biofuel.

Gu is converting biochar, a charcoal-like material, into graphene which can be used in place of expensive, activated carbon to coat the electrodes of energy storage devices—supercapacitors.

Small engines use start-up and run capacitors, Gu explained, but supercapacitors have more rapid charge and discharge rates as well as a higher energy storage capacity. Unlike conventional batteries, supercapacitors can withstand low temperatures.

To manufacture these storage devices, the United States now imports most of its activated carbon from Asia—including Japan, Thailand and China. “We can use these abundant agricultural materials as biofuel to reduce our dependence on petroleum and, at the same time, generate good active carbon to export,” Gu said.

Increasing product value
Gu estimated that approximately 2.2 pounds of graphene is worth at least $1,000. A pound of DDGS costs 7.5 to 9 cents and converts to approximately 7 ounces of graphene.

“That’s the increased value of the product,” Gu said. “We can convert agricultural residue to a high-value product that is easy to ship.”

Once the DDGS or corn stover is transformed to biochar, Gu mixes chemical called a catalyst with the biochar and heats the mixture to 1,292 degrees Fahrenheit for one hour to make porous graphene.

“It’s a one-step process,” he said. He estimated production costs, including feedstock, at about $1.36 for a pound of graphene.

Using the native grass big blue stem as the feedstock, Gu said, “we save more on feedstock.”

In addition, Gu hopes to adapt a new plasma processing technique developed at SDSU that reduces the processing time to five minutes and the temperature to 302 degrees Fahrenheit to convert biochar to graphene.

That could result in a significant cost savings, he added.

Optimizing material properties
Though Gu’s processing method generates graphene with the properties needed to capture and discharge electricity, he admitted, “We don’t know how the reaction happens.”

Through a $775,155 grant from the National Science Foundation along with $332,210 in university matching funds, Gu and a team of SDSU researchers studying carbon materials and biofuel technologies have purchased a transmission electron microscope will help advance this and other projects campuswide. The instrument should arrive this spring.

“We can find out how the process happens and learn how to change the parameters to improve the end product,” Gu said.

With the microscope, he and his team can determine the internal material structure and how the morphology changes its energy storage properties much like doctors use a CT scan to examine the human body, Gu explained. They can also find out whether biochar from one type of feedstock produces better graphene than another.

About South Dakota State University
Founded in 1881, South Dakota State University is the state’s Morrill Act land-grant institution as well as its largest, most comprehensive school of higher education. SDSU confers degrees from eight different colleges representing more than 175 majors, minors and specializations. The institution also offers 32 master’s degree programs, 15 Ph.D. and two professional programs. The work of the university is carried out on a residential campus in Brookings, at sites in Sioux Falls, Pierre and Rapid City, and through Cooperative Extension offices and Agricultural Experiment Station research sites across the state.

Contact Information
Christie Delfanian
Research Writer
christie.delfanian@sdstate.edu
Phone: 605-688-4541
Mobile: 605-651-4183

Christie Delfanian | newswise
Further information:
http://www.sdstate.edu

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>