Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Transforming Biochar Into Activated Carbon


Bioprocessing engineer turns agricultural residue into energy storage material

It’s about transforming corn stover, dried distillers grain solids (DDGS) and even native grasses into a product more than 1,000 times more valuable—graphene.

Photo by Emily Weber

Golden-colored dried distillers grain solids (DDGS) are heated in an oven flooded with nitrogen gas to produce biochar, which can then be converted to graphene, and ultimately used for energy storage in supercapacitors.

The pyrolysis process turns plant materials into bio-oil and biochar, according to assistant professor Zhengrong Gu of the South Dakota State University agricultural and biosystems engineering department. When the bio-oil is further processed, it becomes biofuel.

Gu is converting biochar, a charcoal-like material, into graphene which can be used in place of expensive, activated carbon to coat the electrodes of energy storage devices—supercapacitors.

Small engines use start-up and run capacitors, Gu explained, but supercapacitors have more rapid charge and discharge rates as well as a higher energy storage capacity. Unlike conventional batteries, supercapacitors can withstand low temperatures.

To manufacture these storage devices, the United States now imports most of its activated carbon from Asia—including Japan, Thailand and China. “We can use these abundant agricultural materials as biofuel to reduce our dependence on petroleum and, at the same time, generate good active carbon to export,” Gu said.

Increasing product value
Gu estimated that approximately 2.2 pounds of graphene is worth at least $1,000. A pound of DDGS costs 7.5 to 9 cents and converts to approximately 7 ounces of graphene.

“That’s the increased value of the product,” Gu said. “We can convert agricultural residue to a high-value product that is easy to ship.”

Once the DDGS or corn stover is transformed to biochar, Gu mixes chemical called a catalyst with the biochar and heats the mixture to 1,292 degrees Fahrenheit for one hour to make porous graphene.

“It’s a one-step process,” he said. He estimated production costs, including feedstock, at about $1.36 for a pound of graphene.

Using the native grass big blue stem as the feedstock, Gu said, “we save more on feedstock.”

In addition, Gu hopes to adapt a new plasma processing technique developed at SDSU that reduces the processing time to five minutes and the temperature to 302 degrees Fahrenheit to convert biochar to graphene.

That could result in a significant cost savings, he added.

Optimizing material properties
Though Gu’s processing method generates graphene with the properties needed to capture and discharge electricity, he admitted, “We don’t know how the reaction happens.”

Through a $775,155 grant from the National Science Foundation along with $332,210 in university matching funds, Gu and a team of SDSU researchers studying carbon materials and biofuel technologies have purchased a transmission electron microscope will help advance this and other projects campuswide. The instrument should arrive this spring.

“We can find out how the process happens and learn how to change the parameters to improve the end product,” Gu said.

With the microscope, he and his team can determine the internal material structure and how the morphology changes its energy storage properties much like doctors use a CT scan to examine the human body, Gu explained. They can also find out whether biochar from one type of feedstock produces better graphene than another.

About South Dakota State University
Founded in 1881, South Dakota State University is the state’s Morrill Act land-grant institution as well as its largest, most comprehensive school of higher education. SDSU confers degrees from eight different colleges representing more than 175 majors, minors and specializations. The institution also offers 32 master’s degree programs, 15 Ph.D. and two professional programs. The work of the university is carried out on a residential campus in Brookings, at sites in Sioux Falls, Pierre and Rapid City, and through Cooperative Extension offices and Agricultural Experiment Station research sites across the state.

Contact Information
Christie Delfanian
Research Writer
Phone: 605-688-4541
Mobile: 605-651-4183

Christie Delfanian | newswise
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

Advanced analysis of brain structure shape may track progression to Alzheimer's disease

26.10.2016 | Health and Medicine

3-D-printed structures shrink when heated

26.10.2016 | Materials Sciences

More VideoLinks >>>