Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tomatoes get boost in growth, antioxidants from nano-sized nutrients

09.11.2015

With the world population expected to reach 9 billion by 2050, engineers and scientists are looking for ways to meet the increasing demand for food without also increasing the strain on natural resources, such as water and energy -- an initiative known as the food-water-energy nexus.

Ramesh Raliya, PhD, a postdoctoral researcher, and Pratim Biswas, PhD, the Lucy & Stanley Lopata Professor and chair of the Department of Energy, Environmental & Chemical Engineering, both at the School of Engineering & Applied Science at Washington University in St. Louis, are addressing this issue by using nanoparticles to boost the nutrient content and growth of tomato plants.


This illustration shows the different effects of the application of nano nutrients on a tomato plant.

Credit: Ramesh Raliya, Pratim Biswas

Taking a clue from their work with solar cells, the team found that by using zinc oxide and titanium dioxide nanoparticles, the tomato plants better absorbed light and minerals, and the fruit had higher antioxidant content.

"When a plant grows, it signals the soil that it needs nutrients," Biswas says. "The nutrient it needs is not in a form that the plant can take right away, so it secretes enzymes, which react with the soil and trigger bacterial microbes to turn the nutrients into a form that the plant can use. We're trying to aid this pathway by adding nanoparticles."

Zinc is an essential nutrient for plants, helps other enzymes function properly and is an ingredient in conventional fertilizer. Titanium is not an essential nutrient for plants, Raliya says, but boosts light absorption by increasing chlorophyll content in the leaves and promotes photosynthesis, properties Biswas' lab discovered while creating solar cells.

The team used a very fine spray using novel aerosolization techniques to directly deposit the nanoparticles on the leaves of the plants for maximum uptake.

"We found that our aerosol technique resulted in much greater uptake of nutrients by the plant in comparison to application of the nanoparticles to soil," Raliya says. "A plant can only uptake about 20 percent of the nutrients applied through soil, with the remainder either forming stable complexes with soil constituents or being washed away with water, causing runoff. In both of the latter cases, the nutrients are unavailable to plants."

Overall, plants treated with the nanoparticles via aerosol routes produced nearly 82 percent (by weight) more fruit than untreated plants. In addition, the tomatoes from treated plant showed an increase in lycopene, an antioxidant linked to reduced risk of cancer, heart disease and age-related eye disorders, of between 80 percent and 113 percent.

Previous studies by other researchers have shown that increasing the use of nanotechnology in agriculture in densely populated countries such as India and China has made an impact on reducing malnutrition and child mortality. These tomatoes will help address malnutrition, Raliya says, because they allow people to get more nutrients from tomatoes than those conventionally grown.

In the study, published online last month in the journal Metallomics, the team found that the nanoparticles in the plants and the tomatoes were well below the USDA limit and considerably lower than what is used in conventional fertilizer. However, they still have to be cautious and select the best concentration of nanoparticles to use for maximum benefit, Biswas says.

Raliya and the rest of the team are now working to develop a new formulation of nanonutrients that includes all 17 elements required by plants.

"In 100 years, there will be more cities and less farmland, but we will need more food," Raliya says. "At the same time, water will be limited because of climate change. We need an efficient methodology and a controlled environment in which plants can grow."

###

Raliya R, Nair R, Chavalmane S, Wang W-N, Biswas P. Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics. Published online Oct. 8, 2015. DOI: 10.1039/c5mt00168d.

Funding for this research was provided by the Lopata Endowment and the National Science Foundation.

The School of Engineering & Applied Science at Washington University in St. Louis focuses intellectual efforts through a new convergence paradigm and builds on strengths, particularly as applied to medicine and health, energy and environment, entrepreneurship and security. With 88 tenured/tenure-track and 40 additional full-time faculty, 1,300 undergraduate students, more than 900 graduate students and more than 23,000 alumni, we are working to leverage our partnerships with academic and industry partners -- across disciplines and across the world -- to contribute to solving the greatest global challenges of the 21st century.

Media Contact

Erika Ebsworth-Goold
eebsworth-good@wustl.edu
314-935-2914

 @WUSTLnews

http://www.wustl.edu 

Erika Ebsworth-Goold | EurekAlert!

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>