Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The secret weapons of cabbages: Overcome by butterfly coevolution

25.06.2015

An international team of researchers has used the power of genomics to reveal the mechanisms of an ancient and ongoing arms-race between butterflies and plants, played out in countless gardens around the world as green caterpillars devour cabbage plants.

This study appears 50 years after a classic paper by Drs. Paul Ehrlich and Peter Raven that formally introduced the concept of coevolution using butterflies and plants as primary examples. The present study not only provides striking support for coevolution, but also provides fundamentally new insights into its genetic basis in both groups of organisms. (Proceedings of the National Academy of Sciences of the USA, June 2015).


Larva of the Black Jezebel butterfly (Delias nigrina) feeding on mistletoes. This species has lost the ability to feed on cabbage plants.

Heiko Vogel / Max Planck Institute for Chemical Ecology


Some caterpillars, such as those of the Large White butterfly (Pieris brassicae), can cause severe damage on cabbage and related plants due to their evolutionary optimized adaption to glucosinolates.

Hanna Heidel-Fischer / Max Planck Institute for Chemical Ecology

The major chemical defense of cabbage plants and relatives belonging to the mustard family Brassicales is based on a two-component activated system composed of non-toxic precursors (the glucosinolates or mustard oils) and plant enzymes (myrosinases). These are spatially separated in healthy tissue, but when the tissue is damaged by chewing insects both components are mixed and the so-called "mustard oil bomb" is ignited, producing a series of toxic breakdown products.

It is exactly these breakdown products that can be appealing to humans in certain concentrations (as found in mustard) as well as deterrent or toxic to unadapted herbivores. However, some insects have specialized on cabbage plants and have found various ways to cope with their host plant defenses. Among these are pierids (the White butterflies) and relatives, which specialized on these new host plants shortly after the evolutionary appearance of the Brassicales and their “invention” of the glucosinolate-based chemical defense.

Comparing the evolutionary histories of these plants and butterflies side-by-side, the researchers discovered that major advances in the chemical defenses of the plants were followed by butterflies evolving counter-tactics that allowed them to keep eating these plants. This back-and-forth dynamic was repeated over nearly 80 million years, resulting in the formation of more new species, compared to other groups of plants without glucosinolates and their herbivores.

Thus, the successful adaptation to glucosinolates enabled this butterfly family to rapidly diversify; and pierids are nowadays widespread with some species being very abundant worldwide, such as the Small White and the Large White. While most butterflies of this family now feed on Brassicales, some relatives stick with the ancestral preference for legumes and cannot detoxify glucosinolates. Secondary host shifts away from Brassicales have also taken place, with some species now feeding on other host plants such as mistletoes.

By sequencing the genomes of both plants and butterflies, the researchers discovered the genetic basis for this arms race. Advances on both sides were driven by the appearance of new copies of genes, rather than by simple point mutations in the plants’ and butterflies’ DNA.

Furthermore butterfly species that first developed gene copies adapted to glucosinolates, but later shifted to feeding on non-Brassicales plants such as mistletoes, showed a different pattern. The genes responsible for the ‘mustard-adaptations’ have completely vanished from their genomes. Even an adaptation that took 80 million years to evolve can be discarded when it is no longer needed.

The research is the product of an international team of plant scientists from the University of Missouri, USA and butterfly biologists from Stockholm University, Sweden and the Max Planck Institute for Chemical Ecology, Germany.

Original Publication:
Edger, P.P., Heidel-Fischer, H. M., Bekaert, M., Rota, J., Glöckner, G., Platts, A. E., Heckel, D. G., Der, J. P., Wafula, E. K., Tang, M., Hofberger, J. A., Smithson, A., Hall, J. C., Blanchette, M., Bureau, T. E., Wright, S. I., dePamphilis, C. W., Schranz, M. E., Barker, M. S., Conant, G. C., Wahlberg, N., Vogel, H., Pires, J. C., Wheat, C. W. (2015). The butterfly plant arms-race escalated by gene and genome duplications. Proceedings of the National Academy of Sciences of the USA.
DOI 10.1073/pnas.1503926112
http://dx.doi.org/10.1073/pnas.1503926112

Further Information:
Dr. Hanna Heidel-Fischer, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany, Tel. +49 3641 57-1516, E-Mail hfischer@ice.mpg.de
Dr. Heiko Vogel, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany, Tel. +49 3641 57-1512, E-Mail hvogel@ice.mpg.de


Contact and Picture Requests:
Angela Overmeyer M.A., Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, Germany, +49 3641 57-2110, E-Mail overmeyer@ice.mpg.de

Download of high resolution images via http://www.ice.mpg.de/ext/downloads2015.html

Weitere Informationen:

http://www.ice.mpg.de/ext/1218.html

Angela Overmeyer | Max-Planck-Institut für chemische Ökologie

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>