Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The secret weapons of cabbages: Overcome by butterfly coevolution

25.06.2015

An international team of researchers has used the power of genomics to reveal the mechanisms of an ancient and ongoing arms-race between butterflies and plants, played out in countless gardens around the world as green caterpillars devour cabbage plants.

This study appears 50 years after a classic paper by Drs. Paul Ehrlich and Peter Raven that formally introduced the concept of coevolution using butterflies and plants as primary examples. The present study not only provides striking support for coevolution, but also provides fundamentally new insights into its genetic basis in both groups of organisms. (Proceedings of the National Academy of Sciences of the USA, June 2015).


Larva of the Black Jezebel butterfly (Delias nigrina) feeding on mistletoes. This species has lost the ability to feed on cabbage plants.

Heiko Vogel / Max Planck Institute for Chemical Ecology


Some caterpillars, such as those of the Large White butterfly (Pieris brassicae), can cause severe damage on cabbage and related plants due to their evolutionary optimized adaption to glucosinolates.

Hanna Heidel-Fischer / Max Planck Institute for Chemical Ecology

The major chemical defense of cabbage plants and relatives belonging to the mustard family Brassicales is based on a two-component activated system composed of non-toxic precursors (the glucosinolates or mustard oils) and plant enzymes (myrosinases). These are spatially separated in healthy tissue, but when the tissue is damaged by chewing insects both components are mixed and the so-called "mustard oil bomb" is ignited, producing a series of toxic breakdown products.

It is exactly these breakdown products that can be appealing to humans in certain concentrations (as found in mustard) as well as deterrent or toxic to unadapted herbivores. However, some insects have specialized on cabbage plants and have found various ways to cope with their host plant defenses. Among these are pierids (the White butterflies) and relatives, which specialized on these new host plants shortly after the evolutionary appearance of the Brassicales and their “invention” of the glucosinolate-based chemical defense.

Comparing the evolutionary histories of these plants and butterflies side-by-side, the researchers discovered that major advances in the chemical defenses of the plants were followed by butterflies evolving counter-tactics that allowed them to keep eating these plants. This back-and-forth dynamic was repeated over nearly 80 million years, resulting in the formation of more new species, compared to other groups of plants without glucosinolates and their herbivores.

Thus, the successful adaptation to glucosinolates enabled this butterfly family to rapidly diversify; and pierids are nowadays widespread with some species being very abundant worldwide, such as the Small White and the Large White. While most butterflies of this family now feed on Brassicales, some relatives stick with the ancestral preference for legumes and cannot detoxify glucosinolates. Secondary host shifts away from Brassicales have also taken place, with some species now feeding on other host plants such as mistletoes.

By sequencing the genomes of both plants and butterflies, the researchers discovered the genetic basis for this arms race. Advances on both sides were driven by the appearance of new copies of genes, rather than by simple point mutations in the plants’ and butterflies’ DNA.

Furthermore butterfly species that first developed gene copies adapted to glucosinolates, but later shifted to feeding on non-Brassicales plants such as mistletoes, showed a different pattern. The genes responsible for the ‘mustard-adaptations’ have completely vanished from their genomes. Even an adaptation that took 80 million years to evolve can be discarded when it is no longer needed.

The research is the product of an international team of plant scientists from the University of Missouri, USA and butterfly biologists from Stockholm University, Sweden and the Max Planck Institute for Chemical Ecology, Germany.

Original Publication:
Edger, P.P., Heidel-Fischer, H. M., Bekaert, M., Rota, J., Glöckner, G., Platts, A. E., Heckel, D. G., Der, J. P., Wafula, E. K., Tang, M., Hofberger, J. A., Smithson, A., Hall, J. C., Blanchette, M., Bureau, T. E., Wright, S. I., dePamphilis, C. W., Schranz, M. E., Barker, M. S., Conant, G. C., Wahlberg, N., Vogel, H., Pires, J. C., Wheat, C. W. (2015). The butterfly plant arms-race escalated by gene and genome duplications. Proceedings of the National Academy of Sciences of the USA.
DOI 10.1073/pnas.1503926112
http://dx.doi.org/10.1073/pnas.1503926112

Further Information:
Dr. Hanna Heidel-Fischer, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany, Tel. +49 3641 57-1516, E-Mail hfischer@ice.mpg.de
Dr. Heiko Vogel, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany, Tel. +49 3641 57-1512, E-Mail hvogel@ice.mpg.de


Contact and Picture Requests:
Angela Overmeyer M.A., Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, Germany, +49 3641 57-2110, E-Mail overmeyer@ice.mpg.de

Download of high resolution images via http://www.ice.mpg.de/ext/downloads2015.html

Weitere Informationen:

http://www.ice.mpg.de/ext/1218.html

Angela Overmeyer | Max-Planck-Institut für chemische Ökologie

More articles from Agricultural and Forestry Science:

nachricht Cascading use is also beneficial for wood
11.12.2017 | Technische Universität München

nachricht The future of crop engineering
08.12.2017 | Max-Planck-Institut für Biochemie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>