Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The secret weapons of cabbages: Overcome by butterfly coevolution


An international team of researchers has used the power of genomics to reveal the mechanisms of an ancient and ongoing arms-race between butterflies and plants, played out in countless gardens around the world as green caterpillars devour cabbage plants.

This study appears 50 years after a classic paper by Drs. Paul Ehrlich and Peter Raven that formally introduced the concept of coevolution using butterflies and plants as primary examples. The present study not only provides striking support for coevolution, but also provides fundamentally new insights into its genetic basis in both groups of organisms. (Proceedings of the National Academy of Sciences of the USA, June 2015).

Larva of the Black Jezebel butterfly (Delias nigrina) feeding on mistletoes. This species has lost the ability to feed on cabbage plants.

Heiko Vogel / Max Planck Institute for Chemical Ecology

Some caterpillars, such as those of the Large White butterfly (Pieris brassicae), can cause severe damage on cabbage and related plants due to their evolutionary optimized adaption to glucosinolates.

Hanna Heidel-Fischer / Max Planck Institute for Chemical Ecology

The major chemical defense of cabbage plants and relatives belonging to the mustard family Brassicales is based on a two-component activated system composed of non-toxic precursors (the glucosinolates or mustard oils) and plant enzymes (myrosinases). These are spatially separated in healthy tissue, but when the tissue is damaged by chewing insects both components are mixed and the so-called "mustard oil bomb" is ignited, producing a series of toxic breakdown products.

It is exactly these breakdown products that can be appealing to humans in certain concentrations (as found in mustard) as well as deterrent or toxic to unadapted herbivores. However, some insects have specialized on cabbage plants and have found various ways to cope with their host plant defenses. Among these are pierids (the White butterflies) and relatives, which specialized on these new host plants shortly after the evolutionary appearance of the Brassicales and their “invention” of the glucosinolate-based chemical defense.

Comparing the evolutionary histories of these plants and butterflies side-by-side, the researchers discovered that major advances in the chemical defenses of the plants were followed by butterflies evolving counter-tactics that allowed them to keep eating these plants. This back-and-forth dynamic was repeated over nearly 80 million years, resulting in the formation of more new species, compared to other groups of plants without glucosinolates and their herbivores.

Thus, the successful adaptation to glucosinolates enabled this butterfly family to rapidly diversify; and pierids are nowadays widespread with some species being very abundant worldwide, such as the Small White and the Large White. While most butterflies of this family now feed on Brassicales, some relatives stick with the ancestral preference for legumes and cannot detoxify glucosinolates. Secondary host shifts away from Brassicales have also taken place, with some species now feeding on other host plants such as mistletoes.

By sequencing the genomes of both plants and butterflies, the researchers discovered the genetic basis for this arms race. Advances on both sides were driven by the appearance of new copies of genes, rather than by simple point mutations in the plants’ and butterflies’ DNA.

Furthermore butterfly species that first developed gene copies adapted to glucosinolates, but later shifted to feeding on non-Brassicales plants such as mistletoes, showed a different pattern. The genes responsible for the ‘mustard-adaptations’ have completely vanished from their genomes. Even an adaptation that took 80 million years to evolve can be discarded when it is no longer needed.

The research is the product of an international team of plant scientists from the University of Missouri, USA and butterfly biologists from Stockholm University, Sweden and the Max Planck Institute for Chemical Ecology, Germany.

Original Publication:
Edger, P.P., Heidel-Fischer, H. M., Bekaert, M., Rota, J., Glöckner, G., Platts, A. E., Heckel, D. G., Der, J. P., Wafula, E. K., Tang, M., Hofberger, J. A., Smithson, A., Hall, J. C., Blanchette, M., Bureau, T. E., Wright, S. I., dePamphilis, C. W., Schranz, M. E., Barker, M. S., Conant, G. C., Wahlberg, N., Vogel, H., Pires, J. C., Wheat, C. W. (2015). The butterfly plant arms-race escalated by gene and genome duplications. Proceedings of the National Academy of Sciences of the USA.
DOI 10.1073/pnas.1503926112

Further Information:
Dr. Hanna Heidel-Fischer, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany, Tel. +49 3641 57-1516, E-Mail
Dr. Heiko Vogel, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany, Tel. +49 3641 57-1512, E-Mail

Contact and Picture Requests:
Angela Overmeyer M.A., Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, Germany, +49 3641 57-2110, E-Mail

Download of high resolution images via

Weitere Informationen:

Angela Overmeyer | Max-Planck-Institut für chemische Ökologie

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>