Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The hairy past - Tail hair as an indicator of behaviour and ecology in horses

07.05.2015

Life style leaves chemical traces in hair. In horses, the analysis of tail hair is especially suited as the length of the hair can provide information over a long period of time. Determining the exact period of time that corresponds to a segment of hair is not trivial. Hair does not grow at the same rate in all horses. Researchers at the Vetmeduni Vienna have now solved this problem. They developed a method to correctly assign individual hair growth to seasons and thus to a specific time frame. The results were published in the journal Rapid Communications in Mass Spectrometry.

A common method for learning more about an animal’s ecology and behaviour is to analyse the chemical composition of its hair. This involves the analysis of isotopes, which are variants of a chemical element with different atomic weights. The ratio of different isotopes of hydrogen, oxygen, carbon and nitrogen in a sample can provide important insights on water intake, nutrition and habitat.


Przewalski's horses at an oasis in the Mongolian Gobi desert.

Foto: Martina Burnik Šturm

Martina Burnik Šturm and Petra Kaczensky from the Research Institute of Wildlife Ecology at the University of Veterinary Medicine Vienna investigate the ecology of free-ranging horses and wild asses in the Gobi desert of Mongolia. In order to find out how different wild equid species live together in the Mongolian Gobi, what they eat, drink and how they migrate, the scientists look for answers in hair.

How “long” is one centimetre?

The researches quickly ran into one problem. What does one centimetre of hair actually mean in terms of time? Does one centimetre refer to as one week, one month or more? Measuring how fast hair grows in a particular species does not solve the problem because hair grows at different rates in each individual animal.

First author Burnik Šturm therefore developed a method to clearly align hair segments to time. The habitat of free-ranging equids in Mongolia helped her in this approach. The Mongolian Gobi is subject to extreme climatic conditions. Temperatures vary greatly at different times of year, and so does the composition of the chemical elements in the hair.

By comparing the isotope data from hair with satellite information freely available from NASA’s Earth Observing System Data and Information System (EOSDIS), she assigned a summer-winter rhythm to each hair. This allowed her to calculate the exact time corresponding to one centimetre of hair.

On average, the tail hair of Mongolian wild asses reaches one centimetre in 19 days. Przewalski’s tail hair takes 17 days and the tail hair of domestic horses only 13 days to grow one centimetre.

“We found that tail hair growth varies greatly between species and even between individuals. To assume that closely related species exhibit similar hair growth rates and to use average growth rates for individuals will most probably lead to incorrect results”, states Burnik Šturm.

“Isotope analysis of hair is a common method in the study of animal nutrition and migration. Our method makes it possible for the first time to establish exact time lines for an animal’s ecology and behaviour. Previous time lines were estimations and not entirely accurate. Now researchers have a relatively simple method with which to correctly interpret their data,” says Burnik Šturm.

Special life of wild equids in Mongolia

Tail hair is assumed to provide researchers with information about the ecology and behaviour of Przewalski’s horses, wild asses and free-ranging domestic horses in the Mongolian Gobi. All three species share the same habitat in a 9,000 square metres strictly protected area of southwest Mongolia. Closely related species usually compete for food. Moreover, the grassland in the region is quite barren. A key question for the researchers is: “What allows the animals to coexist in this region.” The project is still ongoing.

How does hair isotope analysis work?

For the isotope analysis, the tail hair is cut into one centimetre long segments and placed individually in little tin or silver cups before being burnt at a temperature of 1,450 degrees Celsius. Isotopes are then measured in the developing gases using mass spectrometry, a method to sort individual atoms by mass.

Today, isotope analysis is used in many different fields. The method can help to determine the regional origin of animals, food or natural fibres. Isotope analysis is also used to detect cases of doping or environmental contamination.

Service:
The article „A protocol to correct for intra- and interspecific variation in tail hair growth to align isotope signatures of segmentally cut tail hair to a common time line”, by Martina Burnik Šturm, Budhan Pukazhenthi, Dolores Reed, Oyunsaikhan Ganbaatar, Stane Sušnik, Agnes Haymerle, Christian C. Voigt and Petra Kaczensky was published in the journal Rapid Communications in Mass Spectrometry. DOI: 10.1002/rcm.7196
http://wiley-blackwell.spi-global.com/authorproofs/journal/RCM/20150401210907/RC...

About the University of Veterinary Medicine, Vienna

The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,300 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms. http://www.vetmeduni.ac.at

Scientific Contact:
Dr. Martina Burnik Šturm
Postdoctoral Researcher
Veterinärmedizinische Universität Wien (Vetmeduni Vienna)
T +43 1 20577-7151
sturm.martina@vetmeduni.ac.at

Released by:
Susanna Kautschitsch
Science Communication / Public Relations
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1153
susanna.kautschitsch@vetmeduni.ac.at

Weitere Informationen:

http://www.vetmeduni.ac.at/en/infoservice/presseinformation/press-releases-2015/...

Dr. Susanna Kautschitsch | idw - Informationsdienst Wissenschaft

Further reports about: Medicine Mongolia Veterinary Veterinary Medicine ecology habitat hair hair growth horses isotope

More articles from Agricultural and Forestry Science:

nachricht Cascading use is also beneficial for wood
11.12.2017 | Technische Universität München

nachricht The future of crop engineering
08.12.2017 | Max-Planck-Institut für Biochemie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>