Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The hairy past - Tail hair as an indicator of behaviour and ecology in horses

07.05.2015

Life style leaves chemical traces in hair. In horses, the analysis of tail hair is especially suited as the length of the hair can provide information over a long period of time. Determining the exact period of time that corresponds to a segment of hair is not trivial. Hair does not grow at the same rate in all horses. Researchers at the Vetmeduni Vienna have now solved this problem. They developed a method to correctly assign individual hair growth to seasons and thus to a specific time frame. The results were published in the journal Rapid Communications in Mass Spectrometry.

A common method for learning more about an animal’s ecology and behaviour is to analyse the chemical composition of its hair. This involves the analysis of isotopes, which are variants of a chemical element with different atomic weights. The ratio of different isotopes of hydrogen, oxygen, carbon and nitrogen in a sample can provide important insights on water intake, nutrition and habitat.


Przewalski's horses at an oasis in the Mongolian Gobi desert.

Foto: Martina Burnik Šturm

Martina Burnik Šturm and Petra Kaczensky from the Research Institute of Wildlife Ecology at the University of Veterinary Medicine Vienna investigate the ecology of free-ranging horses and wild asses in the Gobi desert of Mongolia. In order to find out how different wild equid species live together in the Mongolian Gobi, what they eat, drink and how they migrate, the scientists look for answers in hair.

How “long” is one centimetre?

The researches quickly ran into one problem. What does one centimetre of hair actually mean in terms of time? Does one centimetre refer to as one week, one month or more? Measuring how fast hair grows in a particular species does not solve the problem because hair grows at different rates in each individual animal.

First author Burnik Šturm therefore developed a method to clearly align hair segments to time. The habitat of free-ranging equids in Mongolia helped her in this approach. The Mongolian Gobi is subject to extreme climatic conditions. Temperatures vary greatly at different times of year, and so does the composition of the chemical elements in the hair.

By comparing the isotope data from hair with satellite information freely available from NASA’s Earth Observing System Data and Information System (EOSDIS), she assigned a summer-winter rhythm to each hair. This allowed her to calculate the exact time corresponding to one centimetre of hair.

On average, the tail hair of Mongolian wild asses reaches one centimetre in 19 days. Przewalski’s tail hair takes 17 days and the tail hair of domestic horses only 13 days to grow one centimetre.

“We found that tail hair growth varies greatly between species and even between individuals. To assume that closely related species exhibit similar hair growth rates and to use average growth rates for individuals will most probably lead to incorrect results”, states Burnik Šturm.

“Isotope analysis of hair is a common method in the study of animal nutrition and migration. Our method makes it possible for the first time to establish exact time lines for an animal’s ecology and behaviour. Previous time lines were estimations and not entirely accurate. Now researchers have a relatively simple method with which to correctly interpret their data,” says Burnik Šturm.

Special life of wild equids in Mongolia

Tail hair is assumed to provide researchers with information about the ecology and behaviour of Przewalski’s horses, wild asses and free-ranging domestic horses in the Mongolian Gobi. All three species share the same habitat in a 9,000 square metres strictly protected area of southwest Mongolia. Closely related species usually compete for food. Moreover, the grassland in the region is quite barren. A key question for the researchers is: “What allows the animals to coexist in this region.” The project is still ongoing.

How does hair isotope analysis work?

For the isotope analysis, the tail hair is cut into one centimetre long segments and placed individually in little tin or silver cups before being burnt at a temperature of 1,450 degrees Celsius. Isotopes are then measured in the developing gases using mass spectrometry, a method to sort individual atoms by mass.

Today, isotope analysis is used in many different fields. The method can help to determine the regional origin of animals, food or natural fibres. Isotope analysis is also used to detect cases of doping or environmental contamination.

Service:
The article „A protocol to correct for intra- and interspecific variation in tail hair growth to align isotope signatures of segmentally cut tail hair to a common time line”, by Martina Burnik Šturm, Budhan Pukazhenthi, Dolores Reed, Oyunsaikhan Ganbaatar, Stane Sušnik, Agnes Haymerle, Christian C. Voigt and Petra Kaczensky was published in the journal Rapid Communications in Mass Spectrometry. DOI: 10.1002/rcm.7196
http://wiley-blackwell.spi-global.com/authorproofs/journal/RCM/20150401210907/RC...

About the University of Veterinary Medicine, Vienna

The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,300 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms. http://www.vetmeduni.ac.at

Scientific Contact:
Dr. Martina Burnik Šturm
Postdoctoral Researcher
Veterinärmedizinische Universität Wien (Vetmeduni Vienna)
T +43 1 20577-7151
sturm.martina@vetmeduni.ac.at

Released by:
Susanna Kautschitsch
Science Communication / Public Relations
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1153
susanna.kautschitsch@vetmeduni.ac.at

Weitere Informationen:

http://www.vetmeduni.ac.at/en/infoservice/presseinformation/press-releases-2015/...

Dr. Susanna Kautschitsch | idw - Informationsdienst Wissenschaft

Further reports about: Medicine Mongolia Veterinary Veterinary Medicine ecology habitat hair hair growth horses isotope

More articles from Agricultural and Forestry Science:

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

nachricht Unusual soybean coloration sheds a light on gene silencing
20.06.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>