Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Texas Tech’s Sequencing of Cotton A-Genome Could Revolutionize Industry

05.12.2014

The accomplishment through collaboration with Bayer CropScience could translate into better commercial varieties for growers.

A team of researchers at Texas Tech University, in collaboration with Bayer CropScience and the National Center for Genome Resources (NGCR) have developed a view into the structure of the cotton A-genome.

This is a significant accomplishment in the sequencing of the cotton genome, which will fuel multi-disciplinary basic and applied research to help increase cotton productivity.

“This information will significantly advance cotton research worldwide,” said Michael Galyean, dean of the College of Agricultural Sciences and Natural Resources. “The genome sequence will eventually lead to improved cotton varieties containing environmentally friendly traits, which are preferred by producers, processors, manufacturers and consumers.”

The annotated draft genome assembly being released is from the African/Asian species Gossypium arboreum, an extant representative of the cotton A-genome lineage paired with the D-genome lineage making up present day cultivated cottons. The A-genome species gave rise to spinnable fiber, eventually leading to the modern-day textile industry.

The draft sequence of G. arboreum is deposited in Genbank and is scheduled to be released to the public today.

Thea Wilkins, former professor of cotton genomics in Texas Tech’s Department of Plant and Soil Sciences, led the approach to unravel the genetic mystery of this species. She collaborated with scientists at Bayer CropScience and next-generation genomic sequencing technology and biocomputing providers KeyGene and NCGR.

This team’s delivery of this high-quality genome sequence presents an unprecedented view into the structure of the A-genome, which will accelerate research efforts for improving cultivated cotton.

Cotton production contributes substantially to economies throughout the globe. Collaborative research projects such as this will help to increase that contribution. Don Jones, director of agricultural research at Cotton Incorporated, said this sequence knowledge is another tool for improving commercial cotton.

“This accomplishment is another cornerstone in understanding the biology that leads to higher yield, improved fiber quality and better stress tolerance while reducing inputs used in producing the crop,” Jones said.

This research was completed under a public-private partnership between the State of Texas, Texas Tech and Bayer CropScience. Mike Gilbert, vice president of global breeding and trait development at Bayer CropScience, said this accomplishment is another great example of the synergy that can be created to deliver innovation in cotton and improve the sustainability and economic value from the farm to the consumer.

“Through our collaborative cotton research program, Bayer CropScience and Texas Tech University under the umbrella of the Texas Research Incentive Program have partnered to create cutting-edge programs in fiber science and genomics to advance cotton knowledge and products,” Gilbert said. “Together we are committed to providing long-lasting solutions for growers and the global cotton community.”

Find Texas Tech news, experts and story ideas at Texas Tech Today Media Resources or follow us on Twitter.

CONTACT: David Weindorf, associated dean for research, Department of Plant and Soil Sciences, College of Agricultural Sciences and Natural Resources, Texas Tech University, (806) 834-5287 or david.weindorf@ttu.edu.

Contact Information
George Watson
Senior Editor
george.watson@ttu.edu
Phone: 806-742-2136

George Watson | newswise
Further information:
http://www.ttu.edu

More articles from Agricultural and Forestry Science:

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

nachricht New rice fights off drought
04.04.2017 | RIKEN

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>