Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Texas Farm Goes Vertical to Net Tall Yields

15.06.2015

In an area of Texas known by locals as “East of Weird” because of its proximity to progressive Austin, a farm is yielding many bushels of fruit and vegetables on a space no larger than a parking space.

Being a “computer guy from San Antonio,” now-farmer Larry Johnson says he didn’t know anything about plants – he just wanted to do something outside. Rather than look for a bucolic setting with fertile soil, Johnson found a small acreage southwest of Bastrop and began to design a farm much like he would a software program. As a result, his farm can’t be considered a stretch of land — unless one is looking up.


(Texas A&M AgriLife Extension Service photo by Kathleen Phillips)

Strawberries growing in the vertical EzGro Garden system.

“We manufacture high-density vertical garden systems,” Johnson said of the EZGro Garden company he founded. “The system is designed to grow 700 plants in 15 towers in a footprint of 2 feet wide by 18 feet long.”

“It’s a closed irrigation system with a nutrient-rich water solution that comes in through the top,” Johnson explained. “Water is pumped from the floor level and comes up inside the towers and then cascades back down through the pots, bringing nutrients back to the tank.”

He said it takes 5 gallons of water about a minute to go from the top pot to the bottom — a speed he says assures that nutrients flow equally through each pot.

But Johnson’s admission that he can “make a system, but I don’t know plants” led him to the computer again – this time to search for a vegetable production expert. He found Texas A&M AgriLife Extension Service’s Dr. Joe Masabni, a vegetable specialist located in College Station, who agreed to evaluate the EZGro Garden system.

“The research we will do, in addition to proving that the system works, will also aim to show growers that a closed system, whereby the water and fertilizer solution recirculates back to the tank, is safe and does work,” Masabni said. “The common misconception is that if one plant is sick all the rest would get sick, because the disease will move in the water and infect everything else. We want to prove that that doesn’t happen. The stock solution is concentrated enough that it will not allow diseases to grow.”

Masabni said he also will study strawberries grown in a vertical system to determine how dense the plantings can be for maximum yields.

“Because the strawberry is a high-value cash crop and because we have such a rich concentration, we want to know if we can grow even denser than what you would think,” Masabni said. “Instead of putting four plants in a pot, let’s put eight plants, for example, and compare that to production from a pot with only one plant.”

He said that as a researcher he can see that the towers of plants are not showing signs of foliage stress, plant stunting or smaller fruit, but “we need numbers to quantify all lists, because the numbers don’t lie.”

If the research shows the effectiveness of the system, Masabni said, he will be able to provide a guidebook for growers who want to use the closed irrigation system vertical towers.

“The beauty of this system is that a grower can have at least 600 plants in a 2-feet by 18-feet space. If this were in a field situation, that number of plants would have been a 300-foot row in length,” he noted. “So, hopefully we can do the math and show growers that it may be a big initial investment in the system, but that is a one-time event. Think how much could be saved in field preparation, in tractor equipment, in plastic cost, and such.”

Johnson’s company already is selling the vertical towers to growers in several countries and to numerous schools where having a growing system in a classroom is desired, or where space is at a premium or limited.

“This particular system is a non-penetrating system, so it just sits on the ground,” Johnson said. “It could be put on a rooftop, a parking lot, indoors or outdoors — just about anywhere to produce food. There’s pretty much no exception what you can grow in these things.”

He noted that his patented design is produced in Texas with mostly recycled or repurposed materials.

Masabni expects his research to take two years. To view a 30-day time lapse of an Ezgro Garden system, go to https://youtu.be/17bvSfwuscs

Contact Information
Kathleen Phillips
Media Relations Manager
ka-phillips@tamu.edu
Phone: 979-845-2872
Mobile: 979-324-4302

Kathleen Phillips | newswise

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>