Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study reveals promise for expanding hard cider industry


A new study by researchers at Washington State University shows that mechanical harvesting of cider apples can provide labor and cost savings without affecting fruit, juice or cider quality.

The study, published in the journal HortTechnology in October, is one of several focused on cider apple production in Washington state. It was conducted in response to growing demand for hard cider apples in the state and nation.

An over-the-row small fruit harvester passes over cider apple trees at WSU Mount Vernon. (Photos by Carol Miles, WSU)

Bruising from mechanically harvesting cider apples did not affect fruit or juice quality.

Quenching a thirst

Hard cider consumption is trending steeply upward in the region surrounding food-conscious Seattle, and Washington is part of the nation’s hard cider revival. The amount of cider produced in the state tripled between 2007 and 2012.

The rapid expansion means cider apple growers are hard pressed to keep pace with demand. Because cider apples are smaller than dessert apples – the kind we find in the grocery store for fresh eating – it takes longer to harvest them. In fact, harvest labor can account for nearly half of the annual costs of an orchard in full production.

Regions like the Skagit Valley in western Washington that don’t have large-scale commercial apple production lack experienced apple harvest crews.

“We simply don’t have a dedicated agricultural labor market in western Washington,” said horticulturalist Carol Miles, the lead author of the study. “High quality and affordable labor to hand-harvest cider apples is difficult to come by and costly.”

Miles leads one of a handful of cider apple research programs in the nation, located at the WSU Northwestern Washington Research and Extension Center.

Over-the-row harvesting

Mechanical harvest is a logical solution to this challenge – except for two complications. First, such a machine doesn’t exist for apples, which are generally grown in compact trellis systems, hand-picked and carefully handled to avoid bruising.

The other issue is that mechanical harvest is likely to damage fruit, but just what this means for the final product is unknown.

To address the first challenge, Miles and her team used a mechanical raspberry harvesting machine to pick Brown Snout cider apples, a variety grown at the research center. The machine passes over fruit trees that are no higher than six feet, knocking the apples from trees onto a conveyer belt for collection by workers into tote bins.

Researchers assessed the level of damage to the trees and tested the fruit to see what impact, if any, bruising had on fruit and juice quality.

Olive harvester might be suitable

The two-year study showed that machine harvesting required up to four times less labor than hand harvesting, resulting in an average cost savings of $324 per acre. Bruising did occur on all of the fruit, but it didn’t affect the quality of fruit or juice – whether the apples were processed immediately or cold-stored for two to four weeks before pressing.

Miles noted that modifications to the small fruit mechanical harvester could further improve efficiencies for apple harvest. She dreams of one day testing an olive harvester, which can pass over trees that are 10-12 feet tall – the common height for modern apple orchards.

If suitable equipment is available and affordable, then mechanical harvesting could be just what the industry needs to expand and keep up with demand for locally grown cider apples.

Learn more about cider research and education at WSU at .

The paper in HortTechnology is: Yield, Labor and Fruit and Juice Quality Characteristics of Machine and Hand-harvested ‘Brown Snout’ Specialty Cider Apple. Carol A. Miles and Jaqueline King. HortTechnology October 2014 24:519-526.

Carol Miles, WSU Department of Horticulture, 360-848-6150,
Sylvia Kantor, WSU College of Agricultural, Human & Natural Resource Sciences, 206-770-6063,

Sylvia Kantor | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>