Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Salvaging the ecosystem after salvage logging

12.01.2015

After a forest fire burns a large swath across timberlands, logging companies often are not far behind. They come in to do what is called salvage logging--salvaging the timber that has not been completely destroyed by the fire.

It sounds like a good idea, since even the timber from burned trees can be used for lumber. Economic benefit can come from otherwise devastated land. Even the name has a warm, fuzzy ring to it: salvage logging.


Feller bunchers are heavy equipment used in salvage logging to cut down burned trees and pile them up.

Credit: Michigan Tech

The only problem is, the ecological effects are unknown.

Actually, that's not quite true. For over a decade, Joseph Wagenbrenner, assistant professor in Michigan Technological University's School of Forest Resources and Environmental Science, has been examining salvage logging at four forest fire sites in Montana, Colorado and Washington. He and his research team studied the effects of salvage logging on the ground cover, soil compaction, sediment in water runoff and regrowth of vegetation, compared to control plots that were not logged after a fire.

Specifically, they looked at the impact of various salvage logging practices, including the trails made by the most commonly used equipment: feller bunchers--heavy machines that drive uphill, cutting and piling up trees--and skidders, which pick up the piles of trees and drag them back downhill.

They found that the amount of sediment in runoff water increased measurably on the smaller plots, but the increase was not consistent on larger tracts of land. The amount of sediment running downhill and the compaction of the ground was greater where the feller bunchers and skidders were used. The more firmly compacted ground becomes, the less water can soak in and the more runoff and erosion can occur.

Wagenbrenner and colleagues published results of the US Forest Service-funded study in the January 2015 issue of the journal Forest Ecology and Management.

Why is sediment an issue? It can cause flooding, when streams and reservoirs get clogged. At one of the study sites, where the Hayman fire burned 140,000 acres of the Pike-San Isabel National Forest in central Colorado, the sediment runoff was so bad that one of the main reservoirs serving Denver had to be dredged.

Sediment can also damage fish habitat, raising water temperature and killing food sources. And it fills pools and streams with organic matter that is hard for water treatment plants to process, Wagenbrenner explains.

Sometimes salvage logging operations leave the small branches and treetops on the ground. This material, called slash, helped ameliorate the erosion and sediment problem, the researchers found.

His team's recommendations for best management practices for salvage logging include:

  • Leave slash on the ground
  • Break up long feller-buncher and skidder trails with "water bars"--mounds of dirt that slow and divert runoff.
  • Decompact the soil after heavy equipment is used.
  • Consider replanting vegetation, which works better than slash because it roots in the soil.

Michigan Technological University is a leading public research university developing new technologies and preparing students to create the future for a prosperous and sustainable world. Michigan Tech offers more than 130 undergraduate and graduate degree programs in engineering; forest resources; computing; technology; business; economics; natural, physical and environmental sciences; arts; humanities; and social sciences.

Joseph Wagenbrenner | EurekAlert!

More articles from Agricultural and Forestry Science:

nachricht Cascading use is also beneficial for wood
11.12.2017 | Technische Universität München

nachricht The future of crop engineering
08.12.2017 | Max-Planck-Institut für Biochemie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>