Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Riding a horse is far more complex than riding simulators

04.08.2015

For equestrian training you do not necessarily need a horse. Riding simulators to train the riders’ skills have become available recently. Scientists of the Vetmeduni Vienna in Austria investigated possible differences between riding a horse and training with a simulator. The result: the simulator is less demanding and less complex than the horse, although simulator training can be initially stressful for riders. The study was published in the Journal of Equine Veterinary Science.

Flight simulators for the training of air pilots are well known. But what about riding simulators? Although the first horse simulator was used at the French National Equestrian School in Saumur already in the 1980s, riding simulators for dressage, show jumping, polo or racing, have become available only recently.


A riding simulator allows specific training of certain movements.

Photo: Manuela Wulf

They look like horses and respond to the aids of the rider via sensors which measure the force exerted by the reins and the rider’s legs. Via a screen in front of the simulator, the rider immerses himself into a virtual equestrian world.

Simulators are aimed at competitive sports

Riders and jockeys use simulators to repeat movement sequences, improve their position in the saddle or simulate the finish of a race, but they also train to avoid injuries when falling off a horse. Jockeys also use riding simulators to regain their physical fitness after injuries. „A riding simulator always responds in the same way and thus allows standardised training programmes” says Natascha Ille from the Vetmeduni Vienna, first author of the study.

Riding a horse is more demanding

Ille and her co-workers from the Graf Lehndorff Institute for Equine Science, a joint research unit of the Brandenburg State Stud and the Vetmeduni Vienna, tested the response of 12 riders in a show jumping course. They compared the riders’ stress hormones, heart rate and heart rate variability when riding a horse and a riding simulator.

The riders’ heart rate was higher when riding a horse than during simulator-based training. „A horse is the bigger challenge compared to a simulator. The movement characteristics of a horse are more complex and the response of a horse in a given situation is only partially predictable. Riding a simulator is thus physically and psychologically less demanding for riders“, explained Ille.

Heart rate data indicate that the training on a horse had a more pronounced stimulatory effect on the riders` sympathetic nervous systems compared to the training on the simulator. Sympathetic activity is known to increase the body´s performance potential in sportive activities.

Analysis of the stress hormone cortisol in saliva collected from the riders also suggests a stress reaction on the simulator. „This may be due to a novel experience for the riders. Participants in the study had never trained on a simulator before, but were well accustomed to working with horses“, Ille suggests.

„Our results demonstrate that riding a horse is far more complex for the human body than riding a simulator“, summarises project supervisor Jörg Aurich. „However, riding simulators could be an excellent preparation for beginners before they mount a horse for the first time. For competitive riders and jockeys, simulators could be a valuable addition to the training with horses”.

Service:
The article “Riding simulator training induces a lower sympathetic response in riders than training with horses”, by Natascha Ille, Mareike von Lewinski, Christine Aurich, Regina Erber, Manuela Wulf, Rupert Palme, Bill Greenwood and Jörg Aurich was published in the Journal of Equine Veterinary Science. doi:10.1016/j.jevs.2015.06.018
http://www.sciencedirect.com/science/article/pii/S0737080615004256

Video:
https://www.youtube.com/watch?v=b0zqWJUaZnk&feature=youtu.be

About the University of Veterinary Medicine, Vienna
The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,300 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms. http://www.vetmeduni.ac.at

Scientific Contact:
Mag. Natascha Ille
Insemination and Embryotransfer Platform
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-5402 or +43 1 25077-6422
natascha.ille@vetmeduni.ac.at

Released by:
Susanna Kautschitsch
Science Communication / Public Relations
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1153
susanna.kautschitsch@vetmeduni.ac.at

Weitere Informationen:

http://www.vetmeduni.ac.at/en/infoservice/presseinformation/press-releases-2015/...

Dr. Susanna Kautschitsch | idw - Informationsdienst Wissenschaft

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>