Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Riding a horse is far more complex than riding simulators


For equestrian training you do not necessarily need a horse. Riding simulators to train the riders’ skills have become available recently. Scientists of the Vetmeduni Vienna in Austria investigated possible differences between riding a horse and training with a simulator. The result: the simulator is less demanding and less complex than the horse, although simulator training can be initially stressful for riders. The study was published in the Journal of Equine Veterinary Science.

Flight simulators for the training of air pilots are well known. But what about riding simulators? Although the first horse simulator was used at the French National Equestrian School in Saumur already in the 1980s, riding simulators for dressage, show jumping, polo or racing, have become available only recently.

A riding simulator allows specific training of certain movements.

Photo: Manuela Wulf

They look like horses and respond to the aids of the rider via sensors which measure the force exerted by the reins and the rider’s legs. Via a screen in front of the simulator, the rider immerses himself into a virtual equestrian world.

Simulators are aimed at competitive sports

Riders and jockeys use simulators to repeat movement sequences, improve their position in the saddle or simulate the finish of a race, but they also train to avoid injuries when falling off a horse. Jockeys also use riding simulators to regain their physical fitness after injuries. „A riding simulator always responds in the same way and thus allows standardised training programmes” says Natascha Ille from the Vetmeduni Vienna, first author of the study.

Riding a horse is more demanding

Ille and her co-workers from the Graf Lehndorff Institute for Equine Science, a joint research unit of the Brandenburg State Stud and the Vetmeduni Vienna, tested the response of 12 riders in a show jumping course. They compared the riders’ stress hormones, heart rate and heart rate variability when riding a horse and a riding simulator.

The riders’ heart rate was higher when riding a horse than during simulator-based training. „A horse is the bigger challenge compared to a simulator. The movement characteristics of a horse are more complex and the response of a horse in a given situation is only partially predictable. Riding a simulator is thus physically and psychologically less demanding for riders“, explained Ille.

Heart rate data indicate that the training on a horse had a more pronounced stimulatory effect on the riders` sympathetic nervous systems compared to the training on the simulator. Sympathetic activity is known to increase the body´s performance potential in sportive activities.

Analysis of the stress hormone cortisol in saliva collected from the riders also suggests a stress reaction on the simulator. „This may be due to a novel experience for the riders. Participants in the study had never trained on a simulator before, but were well accustomed to working with horses“, Ille suggests.

„Our results demonstrate that riding a horse is far more complex for the human body than riding a simulator“, summarises project supervisor Jörg Aurich. „However, riding simulators could be an excellent preparation for beginners before they mount a horse for the first time. For competitive riders and jockeys, simulators could be a valuable addition to the training with horses”.

The article “Riding simulator training induces a lower sympathetic response in riders than training with horses”, by Natascha Ille, Mareike von Lewinski, Christine Aurich, Regina Erber, Manuela Wulf, Rupert Palme, Bill Greenwood and Jörg Aurich was published in the Journal of Equine Veterinary Science. doi:10.1016/j.jevs.2015.06.018


About the University of Veterinary Medicine, Vienna
The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,300 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms.

Scientific Contact:
Mag. Natascha Ille
Insemination and Embryotransfer Platform
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-5402 or +43 1 25077-6422

Released by:
Susanna Kautschitsch
Science Communication / Public Relations
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1153

Weitere Informationen:

Dr. Susanna Kautschitsch | idw - Informationsdienst Wissenschaft

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>