Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover natural resistance gene against spruce budworm

24.11.2014

Scientists from Université Laval, the University of British Columbia and the University of Oxford have discovered a natural resistance gene against spruce budworm in the white spruce. The breakthrough, reported in The Plant Journal, paves the way to identifying and selecting naturally resistant trees to replant forests devastated by the destructive pest.

A research team composed of professors Éric Bauce, Joerg Bohlmann and John Mackay as well as their students and postdocs discovered the gene in spruces that had remained relatively undamaged by a local budworm outbreak.

The scientists compared the genomes of the more resilient trees and those that suffered substantial damage. "We measured expression levels of nearly 24,000 genes in the two groups of trees, explains Professor Mackay. We discovered a gene, betaglucosidase-1, whose expression in the needles of resistant spruce trees is up to 1,000 times higher than in non-resistant trees."

Postdoctoral scientist Melissa Mageroy then produced the protein encoded by the gene. Tests showed that the protein plays an essential part in chemical reactions resulting in the production of two compounds that are toxic to the budworm, piceol and pungenol, identified in 2011 by a research team supervised by Dr. Éric Bauce. "We could say the gene we discovered produces natural insecticides in the tree foliage," sums up Dr. Mackay.

The resistance gene is present in all white spruces, but is expressed to varying degrees. "Theoretically, we could create white spruce stands that are less vulnerable to the budworm by reforesting areas with plantings from trees with a high expression of the resistance gene," says postdoctoral fellow and study coauthor Geneviève Parent.

Université Laval and University of British Columbia researchers have partnered with Quebec's Ministère des Forêts, de la Faune et des Parcs and the British Columbia Ministry of Forests, Lands and Natural Resource Operations to evaluate applications of their discoveries.

The spruce budworm is a moth whose caterpillar feeds primarily on balsam fir and white spruce needles. It is the most devastating insect to coniferous stands in Eastern North America. The last major outbreak that took place between 1970 and 1990 caused an estimated loss of half a billion cubic meters of wood in the province of Quebec alone, roughly the equivalent of 15 years of harvesting. Since 2003, the total affected forest area has been increasing steadily. Related caterpillars are affecting other types of conifer trees across Canada.

The study's coauthors are: Geneviève Parent, Gaby Germanos, Isabelle Giguère, Nathalie Delvas, Halim Maaroufi, and Éric Bauce (Université Laval); John Mackay (Université Laval and University of Oxford); Melissa Mageroy and Joerg Bohlmann (University of British Columbia). The research was supported by Genome Canada, Genome Québec, Genome British Columbia, the iFor Research Consortium and the Natural Sciences and Engineering Research Council of Canada.

Jean-François Huppé | EurekAlert!
Further information:
http://www.ulaval.ca/

More articles from Agricultural and Forestry Science:

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

nachricht Unusual soybean coloration sheds a light on gene silencing
20.06.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>