Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers discover natural resistance gene against spruce budworm


Scientists from Université Laval, the University of British Columbia and the University of Oxford have discovered a natural resistance gene against spruce budworm in the white spruce. The breakthrough, reported in The Plant Journal, paves the way to identifying and selecting naturally resistant trees to replant forests devastated by the destructive pest.

A research team composed of professors Éric Bauce, Joerg Bohlmann and John Mackay as well as their students and postdocs discovered the gene in spruces that had remained relatively undamaged by a local budworm outbreak.

The scientists compared the genomes of the more resilient trees and those that suffered substantial damage. "We measured expression levels of nearly 24,000 genes in the two groups of trees, explains Professor Mackay. We discovered a gene, betaglucosidase-1, whose expression in the needles of resistant spruce trees is up to 1,000 times higher than in non-resistant trees."

Postdoctoral scientist Melissa Mageroy then produced the protein encoded by the gene. Tests showed that the protein plays an essential part in chemical reactions resulting in the production of two compounds that are toxic to the budworm, piceol and pungenol, identified in 2011 by a research team supervised by Dr. Éric Bauce. "We could say the gene we discovered produces natural insecticides in the tree foliage," sums up Dr. Mackay.

The resistance gene is present in all white spruces, but is expressed to varying degrees. "Theoretically, we could create white spruce stands that are less vulnerable to the budworm by reforesting areas with plantings from trees with a high expression of the resistance gene," says postdoctoral fellow and study coauthor Geneviève Parent.

Université Laval and University of British Columbia researchers have partnered with Quebec's Ministère des Forêts, de la Faune et des Parcs and the British Columbia Ministry of Forests, Lands and Natural Resource Operations to evaluate applications of their discoveries.

The spruce budworm is a moth whose caterpillar feeds primarily on balsam fir and white spruce needles. It is the most devastating insect to coniferous stands in Eastern North America. The last major outbreak that took place between 1970 and 1990 caused an estimated loss of half a billion cubic meters of wood in the province of Quebec alone, roughly the equivalent of 15 years of harvesting. Since 2003, the total affected forest area has been increasing steadily. Related caterpillars are affecting other types of conifer trees across Canada.

The study's coauthors are: Geneviève Parent, Gaby Germanos, Isabelle Giguère, Nathalie Delvas, Halim Maaroufi, and Éric Bauce (Université Laval); John Mackay (Université Laval and University of Oxford); Melissa Mageroy and Joerg Bohlmann (University of British Columbia). The research was supported by Genome Canada, Genome Québec, Genome British Columbia, the iFor Research Consortium and the Natural Sciences and Engineering Research Council of Canada.

Jean-François Huppé | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>