Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover a new link to fight billion-dollar threat to soybean production

14.02.2017

MU scientists show that parasitic nematodes hijack vascular stem cell pathways to attack their hosts

Invisible to the naked eye, cyst nematodes are a major threat to agriculture, causing billions of dollars in global crop losses every year. A group of plant scientists, led by University of Missouri researchers, recently found one of the mechanisms cyst nematodes use to invade and drain life-sustaining nutrients from soybean plants. Understanding the molecular basis of interactions between plants and nematodes could lead to the development of new strategies to control these major agricultural pests and help feed a growing global population.


A nematode (the oblong object on the left) activates the vascular stem cell pathway in the developing nematode feeding site (syncytium) on a plant root.

Credit: Xiaoli Guo, Division of Plant Sciences and Bond Life Sciences Center, University of Missouri; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China

Soybeans are a major component for two-thirds of the world's animal feed and more than half the edible oil consumed in the United States, according to the U.S. Department of Agriculture (USDA). Cyst nematodes jeopardize the healthy production of this critical global food source by "hijacking" the soybean plants' biology.

"Cyst nematodes are one of the most economically devastating groups of plant-parasitic nematodes worldwide," said Melissa Goellner Mitchum, a researcher in the Bond Life Sciences Center and an associate professor in the Division of Plant Sciences at MU. "These parasites damage root systems by creating a unique feeding cell within the roots of their hosts and leeching nutrients out of the soybean plant. This can lead to stunting, wilting and yield loss for the plant. We wanted to explore the pathways and mechanisms cyst nematodes use to commandeer soybean plants."

About 15 years ago, Mitchum and colleagues unlocked clues into how nematodes use small chains of amino acids, or peptides, to feed on soybean roots.

Using next-generation sequencing technologies that were previously unavailable, Michael Gardner, a graduate research assistant, and Jianying Wang, a senior research associate in Mitchum's lab, made a remarkable new discovery -- nematodes possess the ability to produce a second type of peptide that can effectively "take over" plant stem cells that are used to create vital pathways for the delivery of nutrients throughout the plant. Researchers compared these peptides with those produced by plants and found that they were identical to the ones the plants use to maintain vascular stem cells, known as CLE-B peptides.

"Plants send out these chemical signals to its stem cells to begin various functions of growth, including the vascular pathway that plants use to transport nutrients," Mitchum said. "Advanced sequencing showed us that nematodes use identical peptides to activate the same process. This 'molecular mimicry' helps nematodes produce the feeding sites from which they drain plant nutrients."

To test their theory, Xiaoli Guo, a post-doctoral researcher in Mitchum's lab and first author of the study, synthesized the CLE-B nematode peptide and applied it to the vascular cells of Arabidopsis, a model plant system used in plant research. They found that the nematode peptides triggered a growth response in Arabidopsis much in the same way as the plants' own peptides affected development.

Next, the team "knocked out" the genes Arabidopsis plants use to signal to their own stem cells. Here, the nematodes didn't do as well because the parasites were unable to signal to the plant and the nematode's feeding site was compromised, Guo says.

"When a nematode attacks the root, it selects vascular stem cells that are located along the root," Mitchum said. "By knocking out that pathway, we reduced the size of the feeding site that nematodes use to control the plant. This is the first time we've been able to show that the nematode is modulating or controlling the vascular plant pathway. Understanding how plant-parasitic nematodes modulate host plants to their own benefit is a crucial step in helping to create pest-resistant plants. If we can block those peptides and the pathways nematodes use to overtake the soybean plant, then we can enhance resistance for this very valuable global food source."

###

The study "Identification of cyst nematode B-type CLE peptides and modulation of the vascular stem cell pathway for feeding cell formation," recently was published by PLOS Pathogens. This work was supported by grants from the National Science Foundation (IOS-1456047), the U.S. Department of Agriculture (2012-67013-19345) and Huazhong Agricultural University Scientific and Technological Self-Innovation Foundation (Program No. 2016RC004). The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agencies.

Editor's Note: For more on the story please see: https://decodingscience.missouri.edu/2017/02/10/chemical-persuasion/

Media Contact

Jeff Sossamon
sossamonj@missouri.edu
573-882-3346

 @mizzounews

http://www.missouri.edu 

Jeff Sossamon | EurekAlert!

More articles from Agricultural and Forestry Science:

nachricht New study shows producers where and how to grow cellulosic biofuel crops
17.01.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Robotic weeders: to a farm near you?
10.01.2018 | American Society of Agronomy

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>