Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protecting Food Crops From Soil Contaminants

03.03.2015

Chemist uses natural soil components to trap pollutants

Using natural soil components to trap pollutants will allow producers to control soil contaminants and reuse draining water while protecting their agricultural crops, according to Mohamed Elsayed, a Fulbright Postdoctoral Scholar at South Dakota State University’s chemistry and biochemistry department.


Mohamed Elsayed, a Fulbright Postdoctoral Scholar at South Dakota State University’s chemistry and biochemistry department, uses ultrafiltration techniques to break humic acid down into smaller molecules that can then combine with clay minerals in the soil to trap pollutants.

Elsayed, a researcher from the Soil Water and Environmental Research Institute at the Agricultural Research Center in Egypt, will present his work at the American Chemical Society National Meeting March 22-26 in Denver.

If crops are sown in polluted soil, the plants absorb the contaminants, Elsayed explained. These are then transferred to humans when they consume the vegetables or grains.

Because of water shortages in Egypt, Elsayed said, “we need to use water again and again, but before we reuse it, we need to clean it.”

His research seeks to increase the ability of humic acid to adsorb or trap pollutants in combination with either of two clay minerals—kaolinite or montmorillonite. Humic acid is one of the major organic components in soil and is also used as fertilizer.

“The idea is to use natural materials to reduce the pollutants,” he explained. “Natural components are cheaper, more easily available.” Plus, artificial ingredients run the risk of adding to the pollution problems—natural ingredients don’t.

By breaking humic acid into smaller molecules, a process called fractionation, Elsayed hopes to improve the interaction between humic acid and clay minerals and, therefore, their ability to trap pollutants, particularly heavy metals. This project is a continuation of his doctoral research.

If fractionation produces good results, the next step will be to determine the optimum humic acid fractionation combination for each clay mineral to enhance the trapping process, Elsayed explained.

The long-range vision is for producers to apply humic acid, either in solid or liquid form, to enhance soil properties.

“These compounds would capture the heavy metals and organic pollutants so the plant won’t take it up,” he said. The resulting crop would be contaminant-free.

About South Dakota State University
Founded in 1881, South Dakota State University is the state’s Morrill Act land-grant institution as well as its largest, most comprehensive school of higher education. SDSU confers degrees from eight different colleges representing more than 175 majors, minors and specializations. The institution also offers 32 master’s degree programs, 15 Ph.D. and two professional programs. The work of the university is carried out on a residential campus in Brookings, at sites in Sioux Falls, Pierre and Rapid City, and through Cooperative Extension offices and Agricultural Experiment Station research sites across the state.

Contact Information
Christie Delfanian
Research Writer
christie.delfanian@sdstate.edu

Phone: 605-688-4541
Mobile: 605-651-4183
Mohamed.Elsayed@sdstate.edu

Christie Delfanian | newswise
Further information:
http://www.sdstate.edu

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

Decoding cement's shape promises greener concrete

08.12.2016 | Materials Sciences

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>