Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Producing wholesome seed product on site

16.08.2016

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP in conjunction with project partners including Nordkorn Saaten GmbH from Güstrow in the German state of Mecklenburg-Western Pomerania, has developed a high production-capacity, compact, and scalable unit for non-chemical dressing of seed product. The new design will be debuted at the 26th MELA tradeshow for the agriculture, nutrition, aquaculture, forestry, hunting, and landscape architecture industries in Mühlengeez near Rostock in northern Germany, September 15-18, 2016 in Hall 2 at booth 249.

Providing the expanding population with healthy foodstuffs is an enormous challenge whose solution begins very early in the production chain. Besides familiar conventional chemical compounds for seed dressing, an additional process exists for effective destruction of harmful pathogens like fungi and bacteria. The environmentally friendly, purely physical process for disinfection of seed product is based on the germ-killing action of accelerated electrons.


High-efficiency, compact, and mobile unit for on-site seed dressing

© Fraunhofer FEP


Electron ring-source, laboratory setup

© Fraunhofer FEP

If energetic electrons strike pathogens within the target area, the pathogens are destroyed effectively. During electron treatment, the electrons are only allowed to penetrate the seed coat to a depth that empirically precludes any influence on the embryo and endosperm within the interior of the seed kernel. Safe, non-chemical dressing of seed product has been proven during long-term development projects with independent institutes and companies.

The process developed by the Fraunhofer FEP for using electrons to dress seed product has been employed in seed product operations for over fifteen years already. Nordkorn Saaten GmbH is producing electron-treated seed product using equipment of the Fraunhofer FEP and has been marketing it since 2012 under the brand name E-VITA®. The equipment is large in size, though, and designed for dressing seed product only in large volumes of up to 25 t/h.

However, it is not always large quantities of seed product that need dressing. The acquisition and operation of a large installation is usually not worthwhile for small-to-medium quantities below 15 tons per hour. Only a few seed product processing operations have annual sales that economically justify the investment in large-scale capital equipment.

Then there are some products whose hourly throughput is less than five tons per hour. These include types of grass, sprout seeds, and various fine seeds such as vegetable, clover, and flower seeds for example. Scientists of the Fraunhofer FEP have jointly developed a new generation of equipment for this purpose under a project funded through the German Federal Office for Agriculture and Food (Bundesanstalt für Landwirtschaft und Ernährung / BLE).

The objective of the project on seed product dressing using new, cost-effective and resource-conserving electron treatment modules (“Ressourcenschonende Saatgutbehandlung mit neuen, preiswerten Elektronenbehandlungsmodulen”) was to create broader market access for electron-based dressing and make the technology attractive for a larger arena of users. The pivotal development was the fundamental design of economical and modular electron-based dressing units for effective, resource-conserving, and ecological seed dressing. The known deficiencies were to be corrected during this project and existing restrictions removed through creation of user-friendly and adaptable solutions.

The following improvements for the new generation of electron sources were planned and successfully achieved:

1. At least a 50% reduction in investment cost compared to high-production units through simplification of all components
2. Better homogeneity of applied dose from compact sources as well
3. Simple and cost-neutral scalability for production capacities in the range of three to twelve tons of grain seed per hour
4. Significant reduction of energy losses caused by thermal radiation
5. Simplified high-voltage power supply
6. Utility for conventional products such as grains and corn as well as for new products like various fine seeds, flower seed, and grass seed.

An innovative tool for effective seed product dressing with optimum utilization of the input energy was developed using the successful realization of this type of electron source. The efficient use of resources is achieved by means of an annular cold-cathode source.

The centerpiece of the unit is the newly developed electron ring source. “The special aspect of this source is that it works without a thermionic emitter, allowing complete freedom for its shape. This means a unit with just a single electron source can be used for uniform and omnidirectional treatment”, explains André Weidauer, the supervisory head of the project. “The new compact source enables the unit to be mounted and operated in a small van, for example.”

Andreas Prelwitz, Managing Director of Nordkorn Saaten GmbH, enthuses: ”The new unit is a direct result of the previous technology for dressing seed product with electrons. Thanks to its compact shape, the unit requires less energy for the same effectiveness against pathogens on and within seed.

Nordkorn Saaten will be making a very strong commitment to this alternative form of seed product dressing in the future and using this new technology.

The large demand from the agricultural sector attests to the positive experience and the high acceptance rate in an impressive fashion. Electron-based dressing of seed product makes a big contribution to low-impact agricultural production.”

This innovative, mobile, economically efficient, and ecological unit with a processing capacity of up to seven tons of grain seed per hour will be in operation in Germany and other countries beginning in early 2017.

The “Ressourcenschonende Saatgutbehandlung mit neuen, preiswerten Elektronenbehandlungsmodulen” project is funded actually by a grant totaling 2.87 million Euros from the German Federal Ministry of Food and Agriculture (BMEL) under promotional reference number 313-06.01-28-1-54.051-10. The project partners Nordkorn Saaten GmbH, BayWa AG and Glatt Ingenieurtechnik GmbH would like to thank the funding agencies for their support.

Press contact:

Annett Arnold
Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP | Phone +49 351 2586 452 | Annett.Arnold@fep.fraunhofer.de
Winterbergstraße 28 | 01277 Dresden | Germany | www.fep.fraunhofer.de

Weitere Informationen:

http://s.fhg.de/EYv

Annett Arnold | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

Further reports about: Electrons Elektronik FEP Fraunhofer-Institut Plasmatechnik

More articles from Agricultural and Forestry Science:

nachricht Alkaline soil, sensible sensor
03.08.2017 | American Society of Agronomy

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>