Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Predators, Parasites, Pests and the Paradox of Biological Control

20.01.2015

When a bird swoops down and grabs a caterpillar devouring your backyard garden, you might view it as a clear victory for natural pest control.

But what if that caterpillar is infected with larvae from a tiny parasitic wasp—another agent of biological pest control. Who should you root for now, the bird or the wasp?


Photo credit: John Vandermeer

Parasitic wasp lays eggs inside a coffee-eating caterpillar in Chiapas, Mexico.

A new study from University of Michigan researchers suggests that the gardener should cheer for both of them or, more precisely, for the struggle between the predator and the parasite. That kind of competition—even when it involves one creature killing and eating the other in what ecologists call intraguild predation—strengthens and stabilizes biological control systems, the U-M scientists found.

"Competition between control agents may actually help suppress pest problems by acting as a system of checks and balances, limiting overexploitation by any one of them," said Theresa Ong, a U-M doctoral candidate and lead author of a paper scheduled for online publication Jan. 20 in the journal Nature Communications.

"Thus the coupling of two unstable systems has the counterintuitive result of creating a stable, more diverse system," Ong said. The co-author of the paper is Ong's faculty adviser, John Vandermeer, of the U-M Department of Ecology and Evolutionary Biology.

Ong and Vandermeer say the findings of their computer-modeling study have potential applications for the control of crop pests, especially in organic farming where synthetic pesticides are not allowed.

"Many traditional farmers and environmentalists subscribe to the popular idea that the natural world offers ecosystem services that contribute to the stability, productivity and sustainability of agriculture," Vandermeer said. "That is in sharp contrast to the more industrial view of a farm as a battlefield on which the enemies of production must be vanquished."

Ong and Vandermeer argue that in order to achieve effective, pesticide-free control in agriculture, "We must do away with reductionist analyses in favor of more holistic approaches that account for the complex nature of ecosystems."

For decades, farmers have attempted to control crop pests by releasing natural enemies of those pests as biological control agents. In the United States, for example, small parasitic wasps, lady beetles, lacewings and damsel bugs have all been released into alfalfa fields to attack alfalfa weevil larvae.

But biological control systems have proven difficult to stabilize. Often, specialized control agents—which can include various predators, parasites and pathogens—are too good at their jobs. They eliminate the pests that feed them and eventually die out, leading to a resurgence of the pest.

Ecologists call it the paradox of biological control: The most efficient control agents sometimes cause the most extreme pest outbreaks.

The situation grows more complex when multiple control agents compete for the pests. Many ecologists have assumed that competition between predators, parasites and pathogens weakens and destabilizes biological control systems.

But in their Nature Communications paper, Ong and Vandermeer show that separately unstable control agents can combine to create an effective pest management program with a stability that is reminiscent of natural systems.

"In Mexico, where our group has been working on biological control on coffee farms for the past 20 years, one of the major coffee insect pests is evidently controlled by a predator—the lady beetle—and a fungal pathogen, which corresponds to the basic framework we established in this theory," Vandermeer said. "The variability we see in this system from year to year perhaps reflects the sort of simultaneous variability and stability this basic theory suggests."

An example of a biological control system involving a predator, a parasite and a pest is a backyard vegetable garden where caterpillars feed on plants, tiny parasitic wasps lay eggs inside the caterpillars, and black-capped chickadees eat the caterpillars.

The birds and wasps compete for the available caterpillars. Sometimes, the chickadees inadvertently eat caterpillars containing wasp larvae, killing potential competitors in the process. That's intraguild predation. Another example of intraguild predation can be found in Yellowstone National Park, where wolves sometimes kill coyotes that prey on the same resources the wolves do: elk calves and mule deer fawns.

Ecologists have assumed that intraguild predation and other forms of competition hinder biological control efforts. But the study by Ong and Vandermeer shows that's not always the case.

"When the two control agents are combined in that backyard garden, the bird prevents the wasp from overexploiting the pest resource by eating wasps inside the caterpillars," Ong said. "And the wasp helps lower the growth rates of the caterpillars to levels the birds can sufficiently cope with."

Financial support for the study was provided by U-M's Rackham Graduate School.

Contact Information
Jim Erickson, 734-647-1842, ericksn@umich.edu

Jim Erickson | newswise
Further information:
http://www.umich.edu

More articles from Agricultural and Forestry Science:

nachricht Faba fix for corn's nitrogen need
11.04.2018 | American Society of Agronomy

nachricht Wheat research discovery yields genetic secrets that could shape future crops
09.04.2018 | John Innes Centre

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

The dispute about the origins of terahertz photoresponse in graphene results in a draw

25.04.2018 | Physics and Astronomy

Graphene origami as a mechanically tunable plasmonic structure for infrared detection

25.04.2018 | Materials Sciences

First form of therapy for childhood dementia CLN2 developed

25.04.2018 | Studies and Analyses

VideoLinks
Science & Research
Overview of more VideoLinks >>>