Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Polyethylene mulch, glazing create optimal conditions for soil solarization

24.11.2014

Study shows disinfection can occur in less than a week in high tunnels using recommended methods

Soil solarization, a process that uses solar radiation to rid the soil of pests, is most common in regions with high solar radiation and high temperatures during the summer season. An alternative to soil fumigation, the process is used either alone or in combination with fumigants.


Researchers found that soil solarization was most effective when moist soil was covered tightly with polyethylene inside a high tunnel covered with glazing.

Credit: Photo by U.K. Schuch

To accomplish solarization, solar radiation is used to passively heat moist soil covered with clear plastic sheeting, with the goal of increasing soil temperatures to the point where they are lethal to soilborne organisms. The effectiveness of solarization is based on the actual maximum soil temperature reached and the amount of time the high temperatures can be sustained.

According to the authors of a study published in HortScience, the semiarid climate in southern Arizona is ideal for employing soil solarization. Ursula Schuch, advisor to former graduate student Kristen Hanson, said that June is the optimal time for solarization in the region because daily solar radiation and temperatures are higher in June than in any other month.

Low relative humidity during early summer months, combined with high temperatures and high solar radiation, provides growers with opportunities to use solarization in high tunnels while their production beds are fallow.

Schuch, Hanson, and research specialist Tilak Mahato designed experiments to determine the efficacy of using clear polyethylene mulch on the soil surface inside high tunnels covered with clear polyethylene glazing to solarize the soil during the hottest time of the year. "One goal of the study was to provide growers using high tunnels in the semiarid Southwest with information that may be beneficial to protecting their crops from weed and other pest populations," Schuch said.

The experiments took place in two high tunnels in Tuscon. Polyethylene (PE) glazing was kept on each of the two high tunnels from late May through early June. Half of each of the growing beds was covered with solid, clear polyethylene mulch that contained an ultraviolet stabilizer that prevented degradation from solar radiation.

"We found that the most effective solarization strategy was to keep the glazing on the high tunnels in conjunction with a 25.4-mm PE cover on the well-irrigated beds," the authors wrote. "When daily solar radiation averaged 29.8 MJ•m-2 and outside temperatures reached 38 °C, the soil at 5-cm depth exceeded 45 and 55 °C for almost 15 hours and 8 hours, respectively, each day.

This treatment resulted in a significant period each day when temperatures exceeded the thresholds to effectively kill many soil pathogens, pests, and weeds in a relatively short time." In the experiments, soil temperatures to 15-cm depth increased such that disinfestation for many undesirable organisms would be completed in less than 1 week.

The authors added that achieving soil solarization with PE mulch covering the soil without glazing on the high tunnels required a longer duration. The results also determined that solarization with glazing only on the high tunnel was least effective in raising soil temperatures.

The complete study and abstract are available on the ASHS HortScience electronic journal web site: http://hortsci.ashspublications.org/content/49/9/1165.abstract

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application.

More information at http://ashs.org

Michael W. Neff | EurekAlert!

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>