Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Perennial biofuel crops' water consumption similar to corn

07.07.2015

Converting large tracts of the Midwest's marginal farming land to perennial biofuel crops carries with it some key unknowns, including how it could affect the balance of water between rainfall, evaporation and movement of soil water to groundwater.

In humid climates such as the U.S. Midwest, evaporation returns more than half of the annual precipitation to the atmosphere, with the remainder available to recharge groundwater and maintain stream flow and lake levels.


Michigan State University research shows that perennial crops' evapotranspiration did not differ greatly from corn -- a finding that contrasts sharply with earlier studies.

Courtesy of Michigan State University

A recent study from the Great Lakes Bioenergy Research Center and published in Environmental Research Letters looks at how efficiently "second generation" biofuel crops - perennial, non-food crops such as switchgrass or native grasses - use rainwater and how these crops affect overall water balance.

The study, led by Michigan State University professor of ecosystem ecology and GLBRC scientist Stephen Hamilton, is the first multi-year effort to compare the water use of conventional corn crops to the perennial cropping systems of switchgrass, miscanthus, native grasses, restored prairies and hybrid poplar trees.

"When we established the different cropping systems in 2008," Hamilton said, "we installed soil-water sensors at various depths through the root zone. We've been continuously monitoring the soil water content ever since."

Hamilton uses the soil-water sensors to measure the rate of evapotranspiration occurring within each cropping system. Evapotranspiration refers to the sum total of water lost while the plant is growing, either from transpiration, which is evaporation through the plant stem itself, or from water evaporated off of the plant's leaves or the ground. By measuring the amount of precipitation that has fallen against actual soil water content, it's possible to quantify the water lost to evapotranspiration while each crop is growing.

Hamilton's team reports that the perennial system's evapotranspiration did not differ greatly from corn - a finding that contrasts sharply with earlier studies that found particularly high perennial water use in areas with high water tables. Hamilton's study, however, took place in Michigan's temperate humid climate and on the kind of well-drained soil characteristic of marginal farming land.

"The message here," Hamilton said, "is that in many settings, perennials may not use more water. For well-drained soils in the upper Midwest at least, and probably for eastern North America in general, these results most likely apply, and water balance would not be adversely affected."

Though the study has clear implications for cellulosic, or second-generation, biofuel production in the Midwest, Hamilton says it touches more broadly on some of the expected effects of climate change as well.

Since the evapotranspiration rates of the study's cropping systems held steady across several years of varying precipitation levels, the study also suggests that crop evapotranspiration rates may not be as sensitive to climate change as is currently assumed.

"Our observation that plants use roughly the same amount of water regardless of water availability suggests that a warmer or longer growing season may have a relatively small effect on evapotranspiration and thus could affect landscape water balances less than we previously thought," Hamilton said. "Other changes in climate-driven aspects of the water cycle, such as intense rain events, less snow or shorter periods of ice cover on lakes, may have a much larger effect on groundwater, stream flow and lake levels."

###

Additional MSU scientists contributed to this research, including Phil Robertson, Mir Hussain, Ajay Bhardwaj and Bruno Basso.

This research was funded by the GLBRC.

Layne Cameron | EurekAlert!

More articles from Agricultural and Forestry Science:

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

nachricht Unusual soybean coloration sheds a light on gene silencing
20.06.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>