Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Perennial biofuel crops' water consumption similar to corn

07.07.2015

Converting large tracts of the Midwest's marginal farming land to perennial biofuel crops carries with it some key unknowns, including how it could affect the balance of water between rainfall, evaporation and movement of soil water to groundwater.

In humid climates such as the U.S. Midwest, evaporation returns more than half of the annual precipitation to the atmosphere, with the remainder available to recharge groundwater and maintain stream flow and lake levels.


Michigan State University research shows that perennial crops' evapotranspiration did not differ greatly from corn -- a finding that contrasts sharply with earlier studies.

Courtesy of Michigan State University

A recent study from the Great Lakes Bioenergy Research Center and published in Environmental Research Letters looks at how efficiently "second generation" biofuel crops - perennial, non-food crops such as switchgrass or native grasses - use rainwater and how these crops affect overall water balance.

The study, led by Michigan State University professor of ecosystem ecology and GLBRC scientist Stephen Hamilton, is the first multi-year effort to compare the water use of conventional corn crops to the perennial cropping systems of switchgrass, miscanthus, native grasses, restored prairies and hybrid poplar trees.

"When we established the different cropping systems in 2008," Hamilton said, "we installed soil-water sensors at various depths through the root zone. We've been continuously monitoring the soil water content ever since."

Hamilton uses the soil-water sensors to measure the rate of evapotranspiration occurring within each cropping system. Evapotranspiration refers to the sum total of water lost while the plant is growing, either from transpiration, which is evaporation through the plant stem itself, or from water evaporated off of the plant's leaves or the ground. By measuring the amount of precipitation that has fallen against actual soil water content, it's possible to quantify the water lost to evapotranspiration while each crop is growing.

Hamilton's team reports that the perennial system's evapotranspiration did not differ greatly from corn - a finding that contrasts sharply with earlier studies that found particularly high perennial water use in areas with high water tables. Hamilton's study, however, took place in Michigan's temperate humid climate and on the kind of well-drained soil characteristic of marginal farming land.

"The message here," Hamilton said, "is that in many settings, perennials may not use more water. For well-drained soils in the upper Midwest at least, and probably for eastern North America in general, these results most likely apply, and water balance would not be adversely affected."

Though the study has clear implications for cellulosic, or second-generation, biofuel production in the Midwest, Hamilton says it touches more broadly on some of the expected effects of climate change as well.

Since the evapotranspiration rates of the study's cropping systems held steady across several years of varying precipitation levels, the study also suggests that crop evapotranspiration rates may not be as sensitive to climate change as is currently assumed.

"Our observation that plants use roughly the same amount of water regardless of water availability suggests that a warmer or longer growing season may have a relatively small effect on evapotranspiration and thus could affect landscape water balances less than we previously thought," Hamilton said. "Other changes in climate-driven aspects of the water cycle, such as intense rain events, less snow or shorter periods of ice cover on lakes, may have a much larger effect on groundwater, stream flow and lake levels."

###

Additional MSU scientists contributed to this research, including Phil Robertson, Mir Hussain, Ajay Bhardwaj and Bruno Basso.

This research was funded by the GLBRC.

Layne Cameron | EurekAlert!

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>