Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New plant engineering method could help fill demand for crucial malaria drug

14.06.2016

A new and inexpensive technique for mass-producing the main ingredient in the most effective treatment for malaria, artemisinin, could help meet global demands for the drug, according to a study to be published in the journal eLife.

Artemisinin is produced in low yields by a herb called Artemisia annua (A. annua), otherwise known as sweet wormwood. Researchers from the Max Planck Institute of Molecular Plant Physiology have now discovered a new way to produce artemisinic acid, the molecule from which artemisinin is derived, in high yields.


A new and inexpensive technique for mass-producing medical drugs.

Their method involves transferring its metabolic pathway – the series of biochemical steps involved in its production – from A. annua into tobacco, a high-biomass crop.

“Malaria is a devastating tropical disease that kills almost half a million people every year,” says contributing author Ralph Bock, Director of the Department for Organelle Biology, Biotechnology and Molecular Ecophysiology.

“For the foreseeable future, artemisinin will be the most powerful weapon in the battle against malaria but, due to its extraction from low-yielding plants, it is currently too expensive to be widely accessible to patients in poorer countries. Producing artemisinic acid in a crop such as tobacco, which yields large amounts of leafy biomass, could provide a sustainable and inexpensive source of the drug, making it more readily available for those who need it most.”

The team has called this approach to producing more artemisinic acid COSTREL (“combinatorial supertransformation of transplastomic recipient lines”). The first step in their process was to transfer the genes of the artemisinic acid pathway’s core set of enzymes into the chloroplast genome of tobacco plants, generating what are known as transplastomic plants.

The team then used their best transplastomic tobacco plant line to introduce an additional set of genes into its nuclear genome, generating the COSTREL lines. These remaining genes encode factors that increase the synthesis, or generation, of the acid in ways that are still largely unknown.

“While the artemisinic acid pathway in A. annua is confined to the glandular hairs on the plant, leading to low yields of artemisinin, our COSTREL tobacco lines produce it in their chloroplasts and therefore the whole leaf,” says lead author and postdoctoral researcher Paulina Fuentes.

“We generated over 600 engineered tobacco plant lines that harbour different combinations of these additional genes, and analysed them in terms of the amounts of artemisinic compounds they acquired. We could then identify those that generated unprecedented levels of 120 milligrams per kilogram of artemisinic acid in their leaves, which can be readily converted into artemisinin through simple chemical reactions.”

Although further increases in these production levels will be needed if global demand for artemisinin is to be met, the study lays the foundation for much cheaper production of this life-saving therapy in a high-biomass crop, in contrast to a single medicinal plant.

It also provides a new tool for engineering many other complex pathways, with the potential to increase production of other essential therapeutic ingredients.

Reference

The paper ‘A new synthetic biology approach allows transfer of an entire metabolic pathway from a medicinal plant to a biomass crop’ can be freely accessed online at http://dx.doi.org/10.7554/eLife.13664. Contents, including text, figures, and data, are free to reuse under a CC BY 4.0 license.
Media contacts

Emily Packer, eLife
e.packer@elifesciences.org
01223 855373

Ulrike Glaubitz, Max Planck Institute of Molecular Plant Physiology
glaubitz@mpimp-golm.mpg.de
+49 331 567 8275

Weitere Informationen:

http://www.mpimp-golm.mpg.de/2069723/rbock-malaria-drug-in-tobacco

Dipl. Ing. agr. Ursula Ross-Stitt | Max-Planck-Institut für Molekulare Pflanzenphysiologie

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>