Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New plant engineering method could help fill demand for crucial malaria drug

14.06.2016

A new and inexpensive technique for mass-producing the main ingredient in the most effective treatment for malaria, artemisinin, could help meet global demands for the drug, according to a study to be published in the journal eLife.

Artemisinin is produced in low yields by a herb called Artemisia annua (A. annua), otherwise known as sweet wormwood. Researchers from the Max Planck Institute of Molecular Plant Physiology have now discovered a new way to produce artemisinic acid, the molecule from which artemisinin is derived, in high yields.


A new and inexpensive technique for mass-producing medical drugs.

Their method involves transferring its metabolic pathway – the series of biochemical steps involved in its production – from A. annua into tobacco, a high-biomass crop.

“Malaria is a devastating tropical disease that kills almost half a million people every year,” says contributing author Ralph Bock, Director of the Department for Organelle Biology, Biotechnology and Molecular Ecophysiology.

“For the foreseeable future, artemisinin will be the most powerful weapon in the battle against malaria but, due to its extraction from low-yielding plants, it is currently too expensive to be widely accessible to patients in poorer countries. Producing artemisinic acid in a crop such as tobacco, which yields large amounts of leafy biomass, could provide a sustainable and inexpensive source of the drug, making it more readily available for those who need it most.”

The team has called this approach to producing more artemisinic acid COSTREL (“combinatorial supertransformation of transplastomic recipient lines”). The first step in their process was to transfer the genes of the artemisinic acid pathway’s core set of enzymes into the chloroplast genome of tobacco plants, generating what are known as transplastomic plants.

The team then used their best transplastomic tobacco plant line to introduce an additional set of genes into its nuclear genome, generating the COSTREL lines. These remaining genes encode factors that increase the synthesis, or generation, of the acid in ways that are still largely unknown.

“While the artemisinic acid pathway in A. annua is confined to the glandular hairs on the plant, leading to low yields of artemisinin, our COSTREL tobacco lines produce it in their chloroplasts and therefore the whole leaf,” says lead author and postdoctoral researcher Paulina Fuentes.

“We generated over 600 engineered tobacco plant lines that harbour different combinations of these additional genes, and analysed them in terms of the amounts of artemisinic compounds they acquired. We could then identify those that generated unprecedented levels of 120 milligrams per kilogram of artemisinic acid in their leaves, which can be readily converted into artemisinin through simple chemical reactions.”

Although further increases in these production levels will be needed if global demand for artemisinin is to be met, the study lays the foundation for much cheaper production of this life-saving therapy in a high-biomass crop, in contrast to a single medicinal plant.

It also provides a new tool for engineering many other complex pathways, with the potential to increase production of other essential therapeutic ingredients.

Reference

The paper ‘A new synthetic biology approach allows transfer of an entire metabolic pathway from a medicinal plant to a biomass crop’ can be freely accessed online at http://dx.doi.org/10.7554/eLife.13664. Contents, including text, figures, and data, are free to reuse under a CC BY 4.0 license.
Media contacts

Emily Packer, eLife
e.packer@elifesciences.org
01223 855373

Ulrike Glaubitz, Max Planck Institute of Molecular Plant Physiology
glaubitz@mpimp-golm.mpg.de
+49 331 567 8275

Weitere Informationen:

http://www.mpimp-golm.mpg.de/2069723/rbock-malaria-drug-in-tobacco

Dipl. Ing. agr. Ursula Ross-Stitt | Max-Planck-Institut für Molekulare Pflanzenphysiologie

More articles from Agricultural and Forestry Science:

nachricht New study shows producers where and how to grow cellulosic biofuel crops
17.01.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Robotic weeders: to a farm near you?
10.01.2018 | American Society of Agronomy

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Novel chip-based gene expression tool analyzes RNA quickly and accurately

18.01.2018 | Medical Engineering

Scientists on the road to discovering impact of urban road dust

18.01.2018 | Ecology, The Environment and Conservation

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>