Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New planning toolset gives farmers more options for improving water quality

28.05.2015

With agriculture increasingly on the hook to improve water quality, curb erosion, and meet other environmental goals, it only makes sense to target soil and water conservation practices to the places on the landscape where they'll do the most good. Exactly how to achieve this is the catch, but a promising new solution is now at the ready, thanks to research led by the USDA-Agricultural Research Service (USDA-ARS) and Environmental Defense Fund.

Writing in the current issue of the Journal of Environmental Quality, the team describes its Agricultural Conservation Planning Framework (ACPF): a systematic approach to identifying the best options for reducing nutrient losses and erosion within a watershed--whether those opportunities exist in farm fields, along stream banks, or in other locations.


This image shows conservation planning in a watershed conceptualized as a pyramid. At the base are fundamental practices to improve soil health, such as crop rotations. These practices are then built upon by techniques that control water flows and nutrient losses within fields, outside of (below) fields, and finally along stream corridors (riparian management).

Credit

Figure courtesy of Tomer, M.D, et al. 2013. Combining precision conservation technologies into a flexible framework to facilitate agricultural watershed planning. J. Soil Water Conserv. 68(5):113A-120A, doi:10.2489/jswc.68.5.113A.

Its roots lie in "precision conservation," the idea of selecting the right conservation practice and placing it where it will be most effective, says lead author Mark Tomer, a USDA-ARS scientist in Iowa. However, while most attempts at this focus on one practice at a time, the ACPF looks at several.

The result is an entire inventory of conservation possibilities, from which farmers and other stakeholders within a watershed can choose their preferred options and even map out a strategy together.

That's important, because as water quality continues to decline in Lake Erie, the Gulf of Mexico, and other locations, people are realizing the need both for a mix of practices and a concerted push.

"These problems are continental in scope, but addressing them involves the management of thousands of small agricultural watersheds and millions of individual farm fields," Tomer says. "So I think providing for a coordinated effort among farmers and others to address water quality is really key."

Building the framework

Excess nutrients flowing from agricultural watersheds affect water quality in several ways. Nitrogen and phosphorus contribute to algal blooms and areas of oxygen-starved, or "hypoxic," zones in downstream water bodies. High nitrate levels also make water unfit for drinking.

But the measures farmers can take to address these problems aren't always apparent. Moreover, while most farmers already engage in conservation, says Tomer, they often only target the most obvious problems on their own lands, such as erosion.

To build on those individual efforts, Tomer and the team began their research in 2012 by creating criteria for siting conservation practices in a suite of optimal locations within a watershed. The criteria are based on information like soil type and land use, and the presence of tile drainage. But what really makes them possible are extremely detailed, topographic maps derived from LiDAR surveys of the ground surface. So fine is the resolution, says Tomer, the technology even allows the height of stream banks to be estimated.

While producing the siting criteria was a critical step, however, the group soon realized this wasn't terribly useful on its own. "We ended up with a list of practices with no flow or overarching concept to guide decisions about their use," Tomer says. That's where the framework comes in.

The framework is basically a pyramid, he explains, with cover crops and other crucial soil management practices at its base. The next level up focuses on options for curbing runoff and nutrient losses within farm fields: Which fields, for example, are most suited to controlled drainage systems or grassed waterways?

Next, the ACPF pinpoints the prime spots for conservation practices outside of fields (nutrient removal wetlands, for instance). And, lastly, it identifies the prospects for reducing both surface and subsurface losses of nutrients and sediments along stream and river corridors.

"So you can think of it as a continuum of opportunities," Tomer says, starting with essential soil health practices that every farmer wants to use, and moving up to more specialized--and, sometimes, more expensive--technologies that should be installed only where they'll give the most benefit.

Impacts on production

Something else users can calculate is how much cropland will need to come out of production to make way for conservation installations. In the work in JEQ, the researchers sited locations for four practices in two test watersheds in Iowa and Illinois, creating different combinations of the techniques across the landscape, called scenarios. For each scenario, they then asked how many farm acres would have to be sacrificed to meet their chosen water quality target: the Iowa Nutrient Reduction Strategy goal of a 40% drop in nitrogen.

In both watersheds they found the target could be feasibly met at the expense of just 3-4% of total cropland. Plus, the ACPF asks whether practices can be placed in sequence, taking the pressure off any single approach to improve water quality. "So if you've got several different practices, they're well-distributed around the watershed, and they don't take a lot of land out of production, you should have something farmers can live with," Tomer says.

At the same time, the ACPF results are never prescriptive, he adds. Instead, they're meant to spark discussion and collaboration. "I think the most important thing about this," he says, "is that it's a way to help farmers understand their options."

###

The research was funded in part by a USDA-NRCS Conservation Innovation Grant to the Environmental Defense Fund. The ACPF has been developed into an ArcGIS toolbox that will be publicly available on the North Central Region Water Network's website this fall.

View the two open access JEQ papers describing the ACPF:

https://www.agronomy.org/publications/jeq/abstracts/44/3/754

https://www.agronomy.org/publications/jeq/abstracts/44/3/768

Journal of Environmental Quality doi:10.2134/jeq2014.09.0386

Susan V. Fisk | EurekAlert!

More articles from Agricultural and Forestry Science:

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

nachricht Unusual soybean coloration sheds a light on gene silencing
20.06.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>