Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New model is first to predict tree growth in earliest stages of tree life

27.07.2016

Model can help forest managers better maintain forests by predicting which trees will survive

Land managers, forestry professionals and conservationists seek to predict how trees will grow so they can better manage existing forests and regrow forests after logging operations. Previous tree growth models can reasonably predict how trees grow once they are about 20 years old and achieve "crown closure" with the trees in the forest around them.

Crown closure occurs when trees in a specific area grow wide and tall enough that their canopies connect. Now, University of Missouri researchers have created a new statistical model that accurately predicts tree growth from when they are first planted until they reach crown closure.

For their study, Lance Vickers, a former doctoral student at MU, and his adviser David Larsen, a professor of forestry in the MU College of Agriculture, Food and Natural Resources, built tree growth statistical equations that describe the process of early tree growth.

Larsen says being able to accurately predict how a stand of trees will grow as soon as they are planted is important for forest managers to effectively grow and maintain forests. He says the model can be applied to forests in any climate zone.

"Only about 10 percent of planted saplings will survive to reach crown closure when they are about 20 years old," Larsen said. "If forest managers can accurately predict which 200 out of 2,000 saplings will survive in a given acre of forest, those managers can spend their time more efficiently by protecting those trees and cutting back trees that will not survive, but still compete with surviving trees for resources."

To create their statistical model, Vickers and Larsen collected data from the Missouri Ozark Forest Ecosystem Project (MOFEP) which is a state-funded project that is studying Missouri forest ecosystems over the course of 100 years.

Vickers and Larsen used tree growth data from dozens of trees that have grown since the project began in 1990 to develop their tree growth model. Larsen says the long-term tree growth data they collected helped to make this new model much more flexible than previous growth models.

"One of the reasons previous models are unable to predict early tree growth is the huge amount of variability that exists when a number of trees are growing near each other," Larsen said. "The angles tree grow, how much water they consume and the terrain of the land are just a few of the dozens of factors that play roles in which trees will survive past adolescence and which will not. This new model takes all of those factors into account and has helped to create a new understanding of how trees grow in proximity to each other."

The study, "The Impact of Overstory Density on Reproduction Establishment in the Missouri Ozarks - Models for Simulating Regeneration Stochastically," was published in Forest Science.

Media Contact

Nathan Hurst
hurstn@missouri.edu
573-882-6217

 @mizzounews

http://www.missouri.edu 

Nathan Hurst | EurekAlert!

Further reports about: Regeneration Reproduction forest ecosystems forests

More articles from Agricultural and Forestry Science:

nachricht Alkaline soil, sensible sensor
03.08.2017 | American Society of Agronomy

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>