Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New model is first to predict tree growth in earliest stages of tree life

27.07.2016

Model can help forest managers better maintain forests by predicting which trees will survive

Land managers, forestry professionals and conservationists seek to predict how trees will grow so they can better manage existing forests and regrow forests after logging operations. Previous tree growth models can reasonably predict how trees grow once they are about 20 years old and achieve "crown closure" with the trees in the forest around them.

Crown closure occurs when trees in a specific area grow wide and tall enough that their canopies connect. Now, University of Missouri researchers have created a new statistical model that accurately predicts tree growth from when they are first planted until they reach crown closure.

For their study, Lance Vickers, a former doctoral student at MU, and his adviser David Larsen, a professor of forestry in the MU College of Agriculture, Food and Natural Resources, built tree growth statistical equations that describe the process of early tree growth.

Larsen says being able to accurately predict how a stand of trees will grow as soon as they are planted is important for forest managers to effectively grow and maintain forests. He says the model can be applied to forests in any climate zone.

"Only about 10 percent of planted saplings will survive to reach crown closure when they are about 20 years old," Larsen said. "If forest managers can accurately predict which 200 out of 2,000 saplings will survive in a given acre of forest, those managers can spend their time more efficiently by protecting those trees and cutting back trees that will not survive, but still compete with surviving trees for resources."

To create their statistical model, Vickers and Larsen collected data from the Missouri Ozark Forest Ecosystem Project (MOFEP) which is a state-funded project that is studying Missouri forest ecosystems over the course of 100 years.

Vickers and Larsen used tree growth data from dozens of trees that have grown since the project began in 1990 to develop their tree growth model. Larsen says the long-term tree growth data they collected helped to make this new model much more flexible than previous growth models.

"One of the reasons previous models are unable to predict early tree growth is the huge amount of variability that exists when a number of trees are growing near each other," Larsen said. "The angles tree grow, how much water they consume and the terrain of the land are just a few of the dozens of factors that play roles in which trees will survive past adolescence and which will not. This new model takes all of those factors into account and has helped to create a new understanding of how trees grow in proximity to each other."

The study, "The Impact of Overstory Density on Reproduction Establishment in the Missouri Ozarks - Models for Simulating Regeneration Stochastically," was published in Forest Science.

Media Contact

Nathan Hurst
hurstn@missouri.edu
573-882-6217

 @mizzounews

http://www.missouri.edu 

Nathan Hurst | EurekAlert!

Further reports about: Regeneration Reproduction forest ecosystems forests

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>