Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New model is first to predict tree growth in earliest stages of tree life

27.07.2016

Model can help forest managers better maintain forests by predicting which trees will survive

Land managers, forestry professionals and conservationists seek to predict how trees will grow so they can better manage existing forests and regrow forests after logging operations. Previous tree growth models can reasonably predict how trees grow once they are about 20 years old and achieve "crown closure" with the trees in the forest around them.

Crown closure occurs when trees in a specific area grow wide and tall enough that their canopies connect. Now, University of Missouri researchers have created a new statistical model that accurately predicts tree growth from when they are first planted until they reach crown closure.

For their study, Lance Vickers, a former doctoral student at MU, and his adviser David Larsen, a professor of forestry in the MU College of Agriculture, Food and Natural Resources, built tree growth statistical equations that describe the process of early tree growth.

Larsen says being able to accurately predict how a stand of trees will grow as soon as they are planted is important for forest managers to effectively grow and maintain forests. He says the model can be applied to forests in any climate zone.

"Only about 10 percent of planted saplings will survive to reach crown closure when they are about 20 years old," Larsen said. "If forest managers can accurately predict which 200 out of 2,000 saplings will survive in a given acre of forest, those managers can spend their time more efficiently by protecting those trees and cutting back trees that will not survive, but still compete with surviving trees for resources."

To create their statistical model, Vickers and Larsen collected data from the Missouri Ozark Forest Ecosystem Project (MOFEP) which is a state-funded project that is studying Missouri forest ecosystems over the course of 100 years.

Vickers and Larsen used tree growth data from dozens of trees that have grown since the project began in 1990 to develop their tree growth model. Larsen says the long-term tree growth data they collected helped to make this new model much more flexible than previous growth models.

"One of the reasons previous models are unable to predict early tree growth is the huge amount of variability that exists when a number of trees are growing near each other," Larsen said. "The angles tree grow, how much water they consume and the terrain of the land are just a few of the dozens of factors that play roles in which trees will survive past adolescence and which will not. This new model takes all of those factors into account and has helped to create a new understanding of how trees grow in proximity to each other."

The study, "The Impact of Overstory Density on Reproduction Establishment in the Missouri Ozarks - Models for Simulating Regeneration Stochastically," was published in Forest Science.

Media Contact

Nathan Hurst
hurstn@missouri.edu
573-882-6217

 @mizzounews

http://www.missouri.edu 

Nathan Hurst | EurekAlert!

Further reports about: Regeneration Reproduction forest ecosystems forests

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>