Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insight into why Pierce's disease is so deadly to grapevines

11.06.2018

Research could help diagnose disease early and increase plant health

Scientists are gaining a better understanding of Pierce's disease and how it affects grapevines. The disease, which annually costs California more than $100 million, comes from a bacterium called Xylella fastidiosa. While the bacterium has been present in the state for more than 100 years, Pierce's disease became a more serious threat to agriculture with the arrival of the glassy-winged sharpshooter insect, which can carry the bacterium from plant to plant.


This is symptoms of Pierce's disease on a grapevine leaf.

Credit: University of California

In a new study, published in Frontiers in Plant Science, researchers at the University of California, Davis, have identified a set of molecular markers that influence the onset of Pierce's disease in grapevines.

"We now have a very good idea of the plant responses to the disease," said lead author Paulo Zaini, a postdoctoral researcher in the Department of Plant Sciences at UC Davis. "This will help us in early diagnosis and help us design strategies to protect the plant from damaging itself."

HOW INFECTION DEVELOPS

The glassy-winged sharpshooter injects the Xylella fastidiosa bacterium into the plant's xylem, which is the part of the plant that carries water. The disease causes leaves to yellow or "scorch," eventually drying up and dropping from the vine. It can kill a plant in three to five years. Few diseases can kill grapevines so quickly.

The glassy-winged sharpshooter was first reported in California in 1994 and can travel greater distances than native sharpshooters. By 2002, the glassy-winged sharpshooter had infested more than 1,100 acres of grapevines statewide.

"What growers do to stop the bug is just apply insecticides at an increasingly growing rate," said Zaini. "It's not a sustainable strategy."

In this study the authors looked at the plant's responses to the disease compared to healthy plants. Better understanding the biochemical changes with onset of the disease can help foster new strategies to increase plant health, rather than having to use insecticides to fight disease.

Scientists have long thought the bacteria growing in the xylem blocked the flow of water to the leaves.

"We thought that the blockage causes a drought stress, but there's much more to it than that." said Abhaya Dandekar, professor of plant sciences and the study's principal investigator. "Not all the vessels are blocked."

The blockage might be part of the problem, but it doesn't answer all the questions. More than 200 plant species harbor the bacterium but are asymptomatic.

Having identified molecular markers important for Pierce's disease in grapevines, researchers can use them to study grapevine varieties or other plants that do not develop disease.

###

Co-authors include Hossein Gouran, Sandeep Chakraborty, and My Phu with the UC Davis Department of Plant Sciences; Dario Cantu with the UC Davis Department of Viticulture and Enology; and Rafael Nascimento and Luiz Goulart with the Institute of Genetics and Biochemistry at the Federal University of Uberlandia in Brazil.

The study was funded by the California Department of Food and Agriculture Pierce's Disease Board and CAPES, a Brazilian scientific research funding agency.

Media Contact

Amy Quinton
amquinton@ucdavis.edu
530-752-9843

 @ucdavisnews

http://www.ucdavis.edu 

Amy Quinton | EurekAlert!
Further information:
https://www.ucdavis.edu/news/new-insight-why-pierce%E2%80%99s-disease-so-deadly-grapevines
http://dx.doi.org/10.3389/fpls.2018.00771

More articles from Agricultural and Forestry Science:

nachricht Where are Europe’s last primary forests?
29.05.2018 | Humboldt-Universität zu Berlin

nachricht Raiding the rape field
23.05.2018 | Julius-Maximilians-Universität Würzburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

12th COMPAMED Spring Convention: Innovative manufacturing processes of modern implants

28.05.2018 | Event News

 
Latest News

Checking power plant components in a more targeted manner

11.06.2018 | Power and Electrical Engineering

A nanotech sensor that turns molecular fingerprints into bar codes

08.06.2018 | Information Technology

A webcam is enough to produce a real-time 3D model of a moving hand

08.06.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>